

Species Status Report

Peregrine Falcon

Falco peregrinus (anatum/tundrius complex)

Kilgavik (Inuinnaqtun)

Kijgavik (Siglitun)

Kirgavik (Ummarmiutun)

Tatsəa (Déljnę Got'jne)

Fenisen (Shúhtaot'jne)

Fəsəne (K'ashógot'jne)

Tatsea (Tłıchǫ)

Chiniitrành (Gwich'ya Gwich'in)

IN THE NORTHWEST TERRITORIES

NORTHWEST TERRITORIES

**SPECIES
AT RISK**
COMMITTEE

ASSESSMENT – NOT AT RISK

May 2022

Species at Risk Committee status reports are working documents used in assigning the status of species suspected of being at risk in the Northwest Territories (NWT).

Suggested citation:

Species at Risk Committee. 2022. Species Status Report for Peregrine Falcon (*Falco peregrinus*) in the Northwest Territories. Species at Risk Committee, Yellowknife, NT.

© Government of the Northwest Territories on behalf of the Species at Risk Committee

ISBN: 978-0-7708-0283-7 / 0-7708-0283-4

Production Note

The drafts of this report were prepared by Chris Shank under contract with the Government of the Northwest Territories, and edited by Michele Grabke and Mélanie Routh, NWT Species at Risk Secretariat.

For additional copies contact:

Species at Risk Secretariat
c/o SC6, Department of Environment and Natural Resources
P.O. Box 1320
Yellowknife, NT X1A 2L9
Tel.: (855) 783-4301 (toll free)
Fax.: (867) 873-0293
E-mail: sara@gov.nt.ca
www.nwtspeciesatrisk.ca

ABOUT THE SPECIES AT RISK COMMITTEE

The Species at Risk Committee was established under the *Species at Risk (NWT) Act*. It is an independent committee of experts responsible for assessing the biological status of species at risk in the NWT. The Committee uses the assessments to make recommendations on the listing of species at risk. The Committee uses objective biological criteria in its assessments and does not consider socio-economic factors. Assessments are based on species status reports that include the best available Indigenous knowledge, community knowledge, and scientific knowledge of the species. The status report is approved by the Committee before a species is assessed.

ABOUT THIS REPORT

This species status report is a comprehensive report that compiles and analyzes the best available information on the biological status of peregrine Falcon the NWT, as well as existing and potential threats and positive influences. Full guidelines for the preparation of species status reports, including a description of the review process, may be found at www.nwtspeciesatrisk.ca.

Environment and Natural Resources, Government of the Northwest Territories, provides full administrative and financial support to the Species at Risk Committee.

Cover illustration photo credit: Gordon Court

ASSESSMENT OF PEREGRINE FALCON

The Northwest Territories Species at Risk met on May 2-5, 2022 and assessed the biological status of Peregrine Falcon in the Northwest Territories. The assessment was based on this approved status report. The Species at Risk Committee (SARC) determined that there was not enough available documented Indigenous and Community Knowledge (ICK) to prepare an ICK component of the status report. Therefore, the status report is based almost exclusively on Scientific Knowledge (SK). Nonetheless, SARC applied the ICK criteria using the available information, including any additional ICK provided by SARC members. The assessment process and objective biological criteria used by the Species at Risk Committee are based on SK and are available at: www.nwtspeciesatrisk.ca.

Assessment: Not at Risk in the Northwest Territories

Not at Risk - The species has been evaluated and found to be not at risk of extinction given the current circumstances.

Main factors:

- Peregrine Falcons are found throughout the NWT and their population is currently considered stable.
- Pesticide levels have now declined to levels that no longer have population-level consequences.
- Despite multiple threats to Peregrine Falcons such as bioaccumulation of pollutants, population decline of prey species, parasites and disease, human disturbance, as well as the complex effects of climate change, the species shows clear signs of resilience and adaptability.

Additional factors:

- The diet of Peregrine Falcons consists largely of birds most of which are in steep decline. However, these declines do not seem to have affected Peregrine Falcon populations in the NWT to date.
- Although large-scale declines in bird populations (prey such as shorebirds, diving ducks and songbirds) are cause for concern, Peregrine Falcons are generalists and may be able to shift their reliance to difference species or species groups.

Positive influences to Peregrine Falcon and their habitat:

- The NWT *Wildlife Act* protects Peregrine Falcons, their nests and eggs.

- In the NWT, habitat protection is provided in areas of the Peregrine Falcon range that overlap with current and proposed protected areas.
- Peregrine Falcons are protected through international agreements and conventions.

Recommendations:

- Improve monitoring of raptors, their habitat and their prey species in the NWT.
- Prioritize Indigenous and Community Knowledge research on birds including raptors, their prey species, their habitat and their ecosystem.
- Research ecosystem level impacts of climate change on raptors and other species including pests, pathogens and parasites.
- Canada and the NWT must uphold and, if possible, exceed international climate change agreements including reducing greenhouse gas emissions at the local level. Climate change in the NWT must be addressed by implementing the *2030 NWT Climate Change Strategic Framework* and Action Plan.

Executive Summary

About the Species

Taxonomy

Traditionally, there have been three recognized subspecies of Peregrine Falcons (*Falco peregrinus*) in North America. Peale's Peregrine Falcon (*F. p. pealei*) is found only along the coast of the Pacific Northwest. The Tundra Peregrine Falcon (*F. p. tundrius*) is found in tundra ecosystems from Alaska to Greenland. The Anatum, or American, Peregrine Falcon (*F. p. anatum*) includes all Peregrine Falcons in North America south of the tundra, except *pealei*. However, recent genetic investigations conclude that the *anatum* and *tundrius* subspecies are indistinguishable. Consequently, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) considers them together as *anatum/tundrius*. The Northwest Territories Species at Risk Committee (SARC) considers all NWT Peregrine Falcons as *Falco peregrinus* for the purpose of status assessment. NWT Peregrine Falcons nesting in the taiga and those in the tundra can be considered as different ecotypes. Many ornithological authorities adhere to the original subspecies differentiation.

Description

The Peregrine Falcon is a medium- to large-sized falcon roughly the size of a crow. Wings are long, narrow and pointed. Females are significantly larger than males with little overlap in size within populations. Adults have bluish-grey upperparts and a bold, black facial stripe extending down from the eye. Underparts are whitish, grey or buffy with variable amounts of striping and barring. Juveniles are dark brown with heavy streaking and blotches on the undersides.

Home Range

Peregrine Falcons vigorously defend an area within approximately 200 m or more of the nest from all intruders. Defense beyond that is less common and vigorous. The home range size during breeding varies widely with prey density.

Diet

The diet of Peregrine Falcons consists largely of birds with the diversity in prey broadly reflecting availability. Along the Mackenzie River, Peregrine Falcons were found to be eating primarily shorebirds, diving ducks and songbirds.

Mortality and Reproduction

Adult Peregrine Falcons have an annual survival rate of 80-85% while juvenile mortality may be as high as 50%. Maximum lifespan is about 20 years and age at first reproduction

(recruitment) in Peregrine Falcons at Rankin Inlet, Nunavut (NU) is 3-4 years. On average, Peregrine Falcons in the NWT lay 3.3 eggs and raise 2.4 young/successful pair.

Place
Distribution
<p>The Peregrine Falcon is among the most widespread birds in the world. It is found on every continent, except Antarctica, with a patchy distribution over all of North America. Peregrine Falcons are found throughout the NWT, but are concentrated in cliff habitat close to water, particularly major rivers, and sparsely-treed, open landscapes. More than 60% of known NWT Peregrine Falcon occurrences are above treeline. All NWT Peregrine Falcons undertake seasonal migrations primarily to Mexico, the Caribbean or Central and South America with the longest known movement being a linear distance of 11,969 km. Peregrine Falcons generally return to their natal area (place of birth) to breed. Peregrine Falcons do not build nests and most commonly lay eggs on ledges located on steep cliffs.</p>
Habitat Preference
<p>Breeding Peregrine Falcons show little or no large-scale habitat preferences and can be found in almost all ecological regions of the NWT. On a finer scale, breeding Peregrine Falcons show preferences for productive, sparsely treed landscapes located near water and south facing cliffs. However, cliff habitat is not an absolute requirement and Peregrine Falcons may nest on grassy ledges or on bare ground.</p>
Population
Abundance
<p>Based on a number of assumptions, the current conservative estimated number of adult Peregrine Falcons in the NWT is approximately 3,500 – 7,000 individuals.</p>
Trends and Fluctuations
<p>Peregrine Falcon populations worldwide crashed dramatically in the 1950s through the 1970s. By the mid-1960s it became clear that eggshells were thinner than usual leading to egg-breakage and reproductive failure. By 1971 it was established that dichlorodiphenyldichloroethylene (DDE), the metabolite of the pesticide dichlorodiphenyltrichloroethane (DDT), was the cause of the egg-shell thinning. By the 1970s, Peregrine Falcons were extirpated east of the Rocky Mountains and south of the boreal forest, but declines were not as pronounced in northern populations. There are no reliable population estimates for NWT Peregrine Falcons prior to the DDT-induced decline. However, surveys at the time estimated a decline of 33 – 60%. Use of DDT was banned in the United</p>

States in 1972, phased out in Canada in the mid-1970s, and restricted worldwide in 2001. Pesticide levels have now declined to levels that no longer have population-level consequences.

The proportion of known nest sites in the NWT seen to be occupied is a common proxy for population abundance and it increased from 1985 to about 2000 when it subsequently plateaued.

The recovery of Peregrine Falcons in the NWT is illustrated by the Mackenzie Valley population which has been frequently surveyed since the mid-1960s. The number of occupied sites increased from nine in 1969 to 141 in 2010. The estimated number of young produced increased from 11 in 1969 to 203 in 2010.

The NWT Peregrine Falcon population is currently considered stable.

Threats and Limiting Factors

Peregrine Falcons maintain a low population density, have relatively low reproductive rate and are high trophic level predators, all of which are characteristics associated with high extinction risk. However, the recent population growth of NWT Peregrine Falcons and the low likelihood of population-limiting threats suggest there is currently little risk to the species in the NWT.

Specific Threats

Currently, pesticide concentrations are not at a level that will cause population effects. However, Peregrine Falcons are top predators, and biomagnification of newly developed chemicals may pose a future threat.

Peregrine Falcons are almost entirely predatory on other bird species, particularly shorebirds. Over the past 48 years, North American shorebird numbers declined by 39% while populations of waterfowl have increased by 56%. It is not known how this change in the Peregrine Falcon's prey base has affected, or will affect, peregrine populations.

The effects of climate change are likely to negatively influence the reproductive success of Peregrine Falcons through nest flooding, collapse or abandonment (due to precipitation and permafrost thaw), and nestling mortality (heat stress, dehydration or pests). Adult Peregrine Falcons may also be influenced by extreme temperature events (heat stress), declines in access to or availability of prey, and phenological changes (affecting migration timing). The extent and population-level effects of climate change related threats remain uncertain.

Human-related threats to NWT Peregrine Falcons (trapping, shooting, egg-collecting, industrial disturbance) are generally not at a scale likely to cause population-level effects.

Positive Influences

The warming climate allows earlier arrival at nest sites which might prove beneficial to NWT Peregrine Falcons since earlier breeding is correlated with high productivity in many birds. As well, climate change will likely provide the opportunity for Peregrine Falcons to extend their range northwards.

Genetic diversity in Canadian Peregrine Falcons is currently higher than in historical populations. Broad genetic diversity helps a species adapt to a changing environment.

Peregrine Falcons are protected through the Migratory Bird Convention, *Wild Animal and Plant Protection and Regulation of International and Interprovincial Trade Act* (WAPPRIITA) and are on the Convention on International Trade in Endangered Species (CITES) Appendix I which prohibits all international commercial trade in the species.

In 2012, Peregrine Falcons were listed as Special Concern under the federal *Species at Risk Act* and COSEWIC re-assessed the Peregrine Falcon anatum/tundrius complex as Not at Risk in 2017. A *Management Plan for the Peregrine Falcon in Canada* was finalized in 2017. The Peregrine Falcon is also protected under all provincial and territorial wildlife acts protecting raptors, nests and eggs. In the NWT, habitat protection is provided in areas of the Peregrine Falcon range that overlap with current and proposed protected areas.

Technical Summary

Question	Scientific Knowledge
Population Trends	
Generation Time (average age of parents in the population) (indicate years, months, days, etc.).	At least eight years.
Number of mature individuals in the NWT (or give a range of estimates)	Unknown, but a conservative estimate is 3,500 – 7,000.
Percent change in total number of mature individuals over the last 10 years or 3 generations (ca. 24 years)	Although the DDT-induced crash of northern populations in the 1950s – 1970s has been estimated at 33 – 60%, the number of occupied territories in the Mackenzie Valley increased from 40 – 141 (250%) in the 25 years from 1985 – 2010.
Percent change in total number of mature individuals over the next 10 years or 3 generations (ca. 24 years)	Unknown, but expected to remain stable.
Percent change in total of mature individuals over any 10 years or 3 generation period that includes both the past and the future .	Expected 0% change from 2010 – 2034.
If there is a decline in the number of mature individuals, is the decline likely to continue if nothing is done?	No declines in number of mature individuals over the past 35 years.

If there is a decline are the causes of the decline reversible?	Not applicable.
If there is a decline are the causes of the decline clearly understood?	Not applicable.
If there is a decline, have the causes of the decline been removed?	Not applicable.
If there are fluctuations or declines are they within, or outside of, natural cycles?	Not applicable.
Are there 'extreme fluctuations' (>1 order of magnitude) in number of mature individuals?	Uncertain.
Distribution	
Estimated extent of occurrence in the NWT (in km ²).	Approximately 1,122,267 km ² for both sightings and nest site locations (= 95% of NWT land area). 1,042,287 km ² for nest site locations only (= 88% of NWT land area).
Index of area of occupancy (IAO) in the NWT (in km ² ; based on 2x2 km grid).	163,780 km ² (= 14% of NWT land area) for nest sites or breeding range.
Number of extant locations ¹ in the NWT.	Not applicable. IUCN Red List Guidelines indicate that when there is no serious plausible threat, one approach is not to use number of locations. There are no "serious plausible

¹ Extant location - The term 'location' defines a geographically or ecologically distinct area in which a single threatening event can rapidly affect all individuals of the species present. The size of the location depends on the area covered by the threatening event and may include part of one or many subpopulations. Where a species is affected by more than one threatening event, location should be defined by considering the most serious plausible threat.

	threats" currently threatening NWT Peregrine Falcons.
Is there a continuing decline in area, extent, and/or quality of habitat?	No, although increase in shrub cover in the tundra is changing habitat structure, with unknown consequences to tundra Peregrine Falcon populations.
Is there a continuing decline in number of locations, number of populations, extent of occupancy, and/or IAO?	No, numbers and distribution are stable or possibly increasing.
Are there 'extreme fluctuations' (>1 order of magnitude) in number of locations, extent of occupancy, and/or IAO?	No, numbers and distribution are stable or possibly increasing.
Is the total population 'severely fragmented' (most individuals found within small and isolated populations)?	No, Peregrine Falcons are highly mobile.
Immigration from populations elsewhere	
Does the species exist elsewhere?	Yes. Peregrine Falcon is one of the most widespread birds in the world and they are found across Canada. Peregrine Falcons breed in all Canadian provinces and territories except Prince Edward Island.
Status of the outside population(s)?	In 2012, the <i>anatum/tundrius</i> subspecies of Peregrine Falcon was listed as Special Concern on Schedule 1 of the federal <i>Species at Risk Act</i> . The subspecies was last re-assessed by the Committee on the Status of Endangered Wildlife in Canada in 2017 as Not at Risk (COSEWIC 2017). The legal status has not yet been changed.
Is immigration known or possible?	Yes. Peregrine Falcons are highly mobile and source populations are present.

Would immigrants be adapted to survive and reproduce in the NWT?	Yes. Peregrine Falcons have wide ecological amplitude and are adapted to many environments.
Is there enough good habitat for immigrants in the NWT?	Yes, but nest site locations may be limiting.
Is the NWT population self-sustaining or does it depend on immigration for long-term survival?	Yes, the NWT population is self-sustaining.
Threats and limiting factors	
Briefly summarize the threats and limiting factors, and indicate the magnitude and imminence for each.	<p>The threat posed to Peregrine Falcons by DDT has largely dissipated. However, the development of potentially harmful new classes of chemicals, uncertainty about controls over hazardous substances on the Peregrine Falcon's migration and wintering ranges, and the species' demonstrated susceptibility to toxic chemicals all present a significant, if hypothetical, threat over the longer term.</p> <p>The changing composition of the Peregrine Falcon's avian prey base has apparently not affected populations to date, suggesting NWT Peregrine Falcons may be effectively switching to alternative prey species. However, if avian prey base declines continue, NWT Peregrines populations may be impacted.</p> <p>The most significant widespread threats of climate change to NWT Peregrine Falcons are increased extreme weather events causing nestling mortality, permafrost thaw and increased erosion leading to nest collapse, declines in access to or availability of prey due to temporal mismatches and phenological changes and potential increase of ectoparasitism of nestlings. The population impacts of these potential threats are uncertain and are likely to unfold gradually.</p> <p>Other human-related threats to NWT Peregrine Falcons are</p>

	generally not at a scale likely to cause population level effects.
Positive influences	
Briefly summarize positive influences and indicate the magnitude and imminence for each.	<p>Climate change may lead to more favourable conditions (e.g., longer breeding season) with range expansion and increased populations (potential for small population increases with slow increase in magnitude). Genetic diversity is higher than it was in historical populations and may help the species to adapt to a changing environment. Peregrine Falcons are protected through various international legislation and conventions including the Migratory Bird Convention, <i>Wild Animal and Plant Protection and Regulation of International and Interprovincial Trade Act</i> (WAPPRIITA) and are on the Convention on International Trade in Endangered Species (CITES) Appendix I.</p> <p>Peregrine Falcons are currently listed as Special Concern under the federal <i>Species at Risk Act</i> and COSEWIC reassessed the Peregrine Falcon anatum/tundrius complex as Not at Risk in 2017. A national <i>Management Plan for the Peregrine Falcon in Canada</i> was finalized in 2017. The Peregrine Falcon is also protected under all provincial and territorial wildlife acts protecting raptors, nests and eggs. In the NWT, habitat protection is provided in areas of the Peregrine Falcon range that overlap with current and proposed protected areas.</p>

Table of Contents

ASSESSMENT OF PEREGRINE FALCON	3
Executive Summary.....	5
Technical Summary.....	9
Table of Contents.....	14
List of Tables.....	17
List of Figures.....	18
PLACE NAMES	20
Preface	22
Preamble.....	23
ABOUT THE SPECIES	24
<i>Names and Classification.....</i>	24
Systematic/Taxonomic/Naming Clarifications	24
<i>Description.....</i>	25
<i>Life Cycle and Reproduction.....</i>	27
Number of Broods Annually.....	27
Eggs and Clutch Size	27
Incubation and Fledging.....	27
Breeding Period.....	27
Productivity	27
Age at First Breeding	28
Life Span and Survivorship	28
Generation Length	28
<i>Physiology and Adaptability</i>	29
<i>Interactions.....</i>	29
Nest Sites.....	29
Interactions with Prey Species	30
Interactions with Parasites.....	30
Interactions with Predators	31
Ecological Function.....	31
PLACE	32
<i>Distribution</i>	32
World and North American Distribution.....	32
NWT Distribution.....	34

Locations	35
Search Effort.....	36
<i>Distribution Trends</i>	37
<i>Movements</i>	37
<i>Habitat Requirements</i>	39
<i>Habitat Availability</i>	40
<i>Habitat Trends</i>	40
<i>Habitat Fragmentation</i>	40
POPULATION	40
<i>Abundance</i>	40
<i>Population Dynamics</i>	43
Clutch Size in NWT	43
Brood Size.....	43
<i>Trends and Fluctuations</i>	44
Historical Population Decline	44
Population Recovery	45
<i>Possibility of Rescue</i>	49
THREATS AND LIMITING FACTORS	49
<i>Pollutants</i>	49
<i>Decline of Prey Species</i>	50
<i>Climate Change</i>	51
<i>Other Human-related Threats</i>	53
<i>Parasites and Diseases</i>	54
POSITIVE INFLUENCES	55
<i>Climate Change</i>	55
<i>Genetic Diversity</i>	55
<i>National and International Protection</i>	55
<i>Habitat Protection</i>	56
ACKNOWLEDGEMENTS	58
AUTHORITIES CONTACTED	59
BIOGRAPHY OF PREPARER	60
STATUS AND RANKS	61

CITED SOURCES.....	63
APPENDIX A – ADDITIONAL INFORMATION	77
<i>Threats Assessment</i>	<i>77</i>
Overall Level of Concern	78
Detailed Threats Assessment	79

List of Tables

Table 1. Number of NWT nest visits by decade. Repeated visits to the same site in a single year are not compiled. Data from NU/NWT Raptor Database (ENR unpubl. data 2020).....	36
Table 2. Known surveys of Peregrine Falcons in the Northwest Territories, 1966 - 2019. The methods reflect search methodology and not whether the nest sites were visited on foot.	40
Table 3. Occupied and productive Peregrine Falcon sites in the Mackenzie Valley 1966 – 2018. The surveys reported by Carrière and Matthews (2013) were done by helicopter and by boat. The surveys reported by Hodson were all done by boat except for 1975, 1980 and 1985 which were done by helicopter.....	48

List of Figures

Figure 1. Place names and water bodies referred to in this status report that occur in the northern portion of the NWT. Map courtesy B. Fournier, Environment and Natural Resources (ENR).....	20
Figure 2. Place names and water bodies referred to in this status report that occur in the southern portion of the NWT. Map courtesy B. Fournier, ENR.....	21
Figure 3. Adult male Peregrine Falcon representative of NWT boreal forest peregrines. Photo taken on the North Saskatchewan River, Alberta. Photo courtesy of Gordon Court...	26
Figure 4. Global distribution of Peregrine Falcon. Geospatial data courtesy of BirdLife International and Handbook of Birds of the World 2019. Map courtesy B. Fournier, ENR.....	32
Figure 5. Breeding range of Peregrine Falcons in North America. This map accurately reflects the full extent of the Peregrine Falcons' breeding range in southern NWT and northern Alberta where the species is known to be present (see Figure 6). Geospatial data courtesy of Environment and Climate Change Canada (ECCC). Map courtesy B. Fournier, ENR.	33
Figure 6. Peregrine Falcon sightings (nests and individuals) in the NWT. Yellow dots represent eBird sightings (GBIF 2021) where people have either observed an individual or found a nest, and navy-blue dots represent NU/NWT Raptor Database nest site locations (ENR unpubl. data 2020). Estimated Peregrine Falcon density is shown in Level II ecoregions (Chowns 2013). Map courtesy B. Fournier, ENR.....	34
Figure 7. Percentage of cumulative number of nest visits to individual nest sites. Data from NU/NWT Raptor Database 2021.....	37
Figure 8. Capture (yellow dots, northern end) and recapture (yellow squares, southern end) locations of Peregrine Falcons banded in the NWT between 1969 and 1977 (Dunn et al. 2009). The line between the points does not indicate path of migration. Data courtesy Environment and Climate Change Canada (ECCC). Map courtesy B. Fournier, ENR.....	38
Figure 9. The proportion of different clutch sizes in NWT Peregrine Falcon nests in which eggs were recorded. The number above the bar is number of observations. Data from NU/NWT Raptor Database 2021.....	43
Figure 10. The proportion of different brood sizes from 1,195 nest visits in which young were present. The number above the bar is number of observations. Data from NWT/NU Raptor Database 2021.	43
Figure 11. Mean (\pm SD) brood size at 1,195 productive sites from 1965 to 2019. Data from NU/NWT Raptor Database 2021.....	44
Figure 12. Decline in DDE residues in Peregrine Falcon eggs collected in Alberta (Alberta Environment and Parks 2019). Figure courtesy of Government of Alberta (Reproduced with permission).	46
Figure 13. Proportion of nest sites occupied 1965 – 2020. The trend-line is the 5-year moving average. Data from NWT/NU Raptor Database 2021.	47

Figure 14. Estimated minimum number of young produced along the Mackenzie River 1969 – 2010. The 1969 data are from Bromley and Matthews (1985) and the remainder from Carrière and Matthews (2013). 48

Figure 15. Established and Proposed Conservation Network in the Northwest Territories as of January 2022, including Established and Candidate Protected Areas under the Protected Areas Act (ENR 2022). 57

PLACE NAMES

The maps below (Figures 1 and 2) are intended to help provide context to readers who may be unfamiliar with the NWT geographic features and place names referred to in this status report.

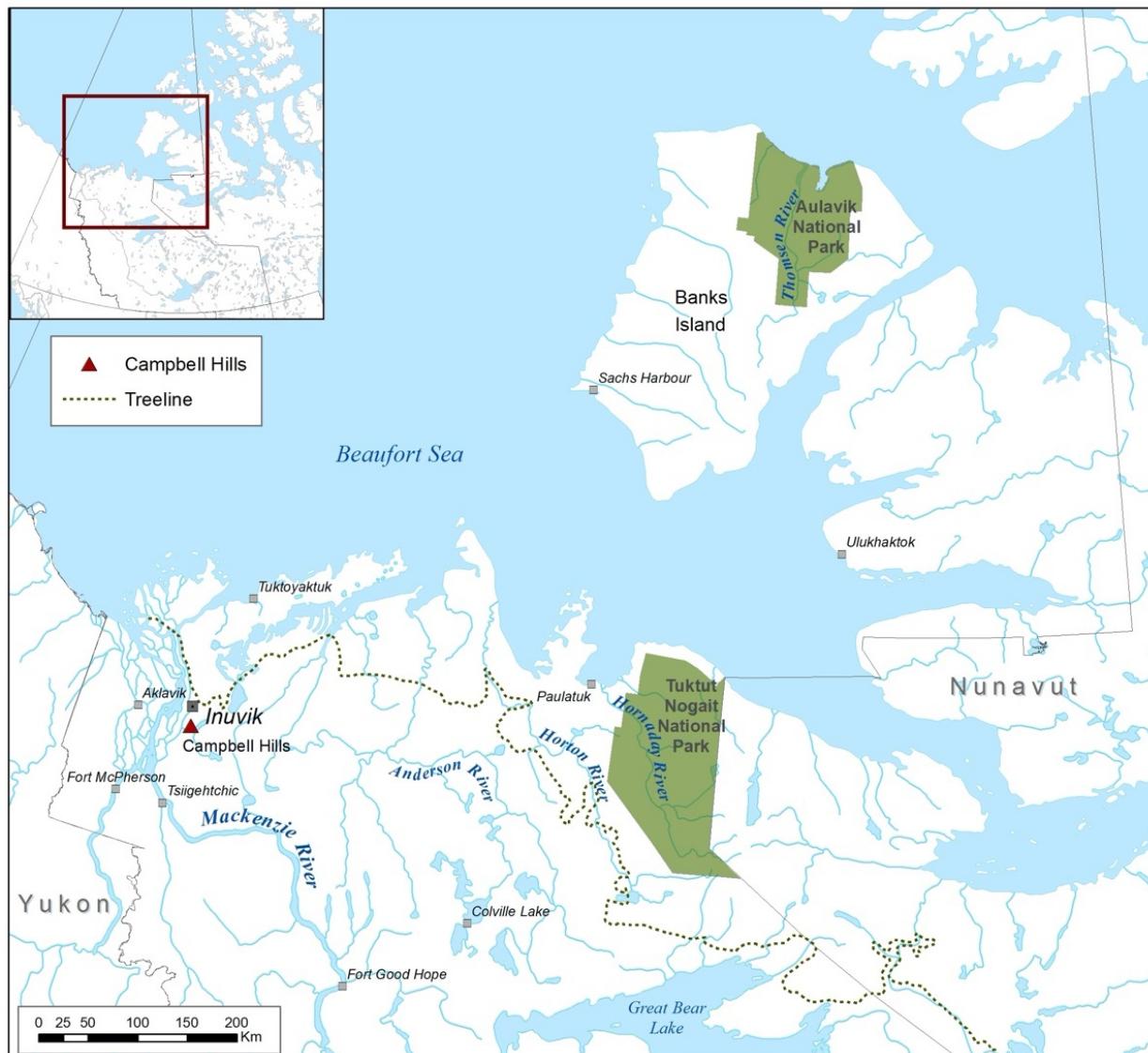


Figure 1. Place names and water bodies referred to in this status report that occur in the northern portion of the NWT. Map courtesy B. Fournier, Environment and Natural Resources (ENR).

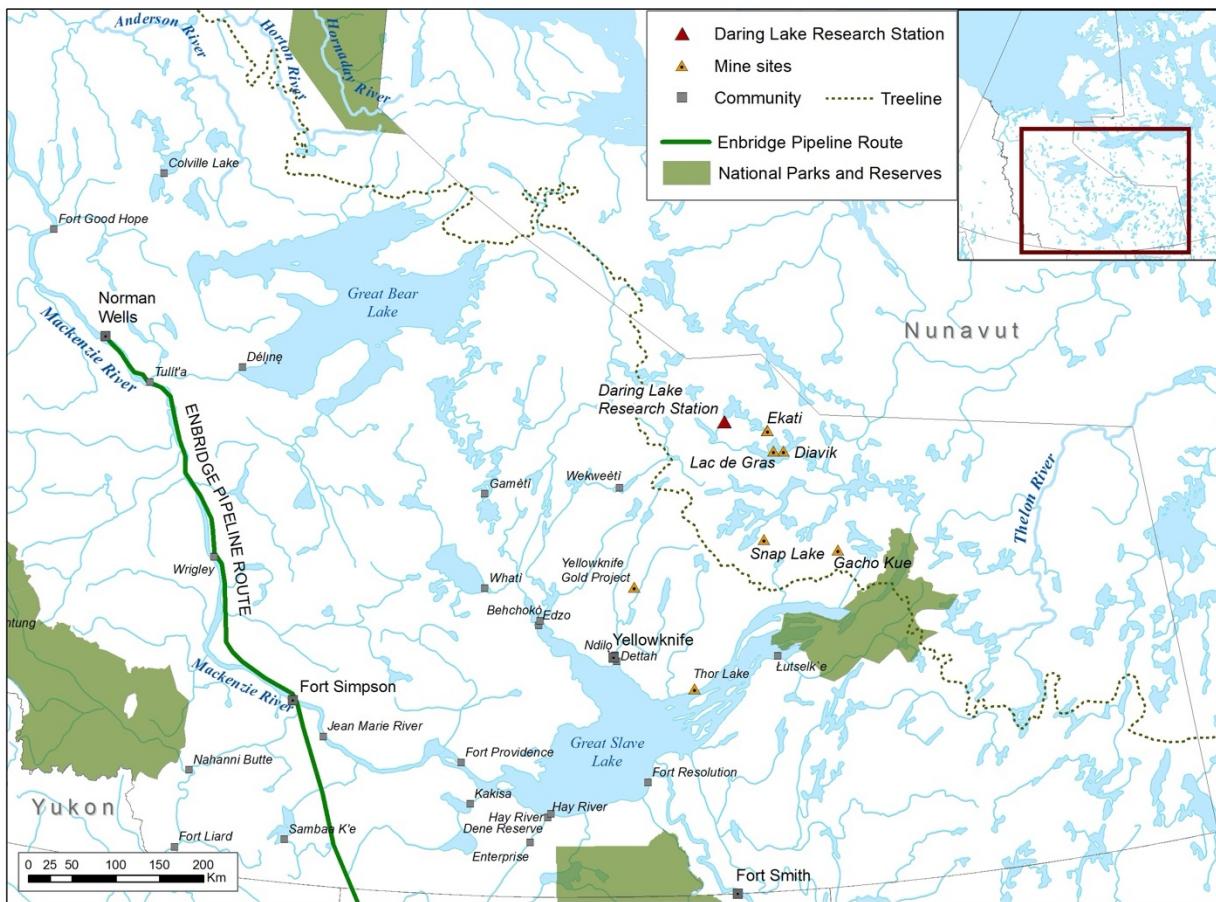


Figure 2. Place names and water bodies referred to in this status report that occur in the southern portion of the NWT. Map courtesy B. Fournier, ENR.

Preface

In the preparation of this report, an effort was made to find sources of Indigenous knowledge, community knowledge, and scientific knowledge. Unfortunately, there is little available documented Indigenous or community knowledge for Peregrine Falcon. Therefore, this report is based almost exclusively on scientific knowledge.

Preamble

Worldwide, Peregrine Falcons experienced a catastrophic decline in numbers in the 1950s through the 1970s as a result of reproductive failure caused by organochlorine pesticides, particularly dichlorodiphenyltrichloroethylene (DDT). Peregrine Falcons became totally or functionally extinct throughout large parts of their global range, although the numerical decline in the NWT was less dramatic than many other parts of North America. Following the ban on DDT, Peregrine Falcons numbers began to show dramatic increases in the NWT and elsewhere. Peregrine Falcon recovery is widely proclaimed as one of the conservation movement's greatest successes.

This report is intended to review the status of Peregrine Falcons in the NWT and provide the information necessary for SARC to evaluate the species' risk status. Since the 1970s, NWT Peregrine Falcon populations have been regularly monitored for numbers and reproductive status. However, there has been little detailed research on behaviour and ecology in the NWT. Peregrine Falcon research has been undertaken at Rankin Inlet, Nunavut and this report makes regular reference to findings made there.

ABOUT THE SPECIES

Names and Classification

Scientific Name:	<i>Falco peregrinus</i> (Tunstall, 1771)
Common Name (English):	Peregrine, Peregrine Falcon, Duck Hawk
Common Name (French):	Faucon pèlerin
Local Names:	
Inuinnaqtun:	Kilgavik (Species at Risk Secretariat 2012)
Siglitun:	Kijgavik (Species at Risk Secretariat 2012)
Ummarmiutun:	Kirgavik (Species at Risk Secretariat 2012)
Délı̨nę Got’ı̨ne:	Tatsəa (Species at Risk Secretariat 2013)
Shúhtaot’ı̨ne:	Fenisen (Species at Risk Secretariat 2013)
K’ashógot’ı̨ne:	Fəsəne (Species at Risk Secretariat 2013)
Tłı̨chǫ	Tatsea (Tłı̨chǫ Online Dictionary 2006)
Gwich’ya Gwich’in	Chiniitràn̨h (Mitchell-Firth <i>et al.</i> 2003)
Population/subpopulations:	Northwest Territories population of <i>anatum/tundrius</i> peregrines (considered a single population)
Class:	Aves
Order:	Falconiformes
Family:	Falconidae
Life Form:	Diurnal bird of prey, Falcon

Systematic/Taxonomic/Naming Clarifications

Historically, falcons were included with vultures, hawks, ospreys and eagles in the Order Falconiformes. However, recent genetic evidence shows that falcons are not closely related to other diurnal birds of prey, but are now considered most closely related to parrots and songbirds (Hackett *et al.* 2008, Suh *et al.* 2011, Jarvis *et al.* 2014). As a result, hawks, eagles, ospreys and vultures were recently reclassified into the new Order Accipitriformes while falcons and caracaras remain in the Order Falconiformes (Integrated Taxonomic Information System (ITIS) n.d.).

Subspecies are a controversial taxonomic unit for conservation, but are often used as a proxy for evolutionary significant units (Phillimore and Owens 2006). Consequently, subspecies can be listed separately under the *Species at Risk (NWT)* Act.

Globally, there is only one Peregrine Falcon species, but 16 – 19 currently recognized subspecies (White *et al.* 2013, Integrated Taxonomic Information System (ITIS) n.d.). Of these,

three traditionally accepted subspecies of Peregrine Falcon occur in North America. The distribution of the Peale's Peregrine Falcon (*F. p. pealei*) is limited to the west coast of Canada and Alaska, but does not occur in the NWT. The Tundra Peregrine Falcon (*F. p. tundrius*) is found in tundra ecosystems from Alaska to Greenland, including in the NWT. The Anatum, or American, Peregrine Falcon (*F. p. anatum*) includes all Peregrine Falcons in North America south of the tundra, except *pealei*. The subspecies name “*anatum*” is a Latin reference (genitive plural) to a duck, reflecting the species’ original common name of “duck hawk” (Glosbe - the multilingual online dictionary n.d.).

Following the near total extinction of the eastern *anatum* Peregrine Falcon (see Section on *Historical Population Decline*), *anatum* captive-breeding recovery efforts in the United States of America (USA) included at least seven non-native subspecies from around the world, of which at least five contributed genes to the released populations (Tordoff and Redig 2001). However, only native Peregrine Falcons were used in Canadian captive breeding programs (Brown *et al.* 2007) and no captive-bred birds were released in the NWT.

Brown *et al.* (2007) found that *anatum* and *tundrius* were genetically indistinguishable in samples taken prior to the population decline. This result was subsequently confirmed by several researchers using a variety of genetic techniques (Johnson *et al.* 2010, White *et al.* 2013, Talbot *et al.* 2017). Consequently, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) considers the two subspecies as a single designatable unit *anatum/tundrius*. Arguably, *tundrius* should be subsumed into the *anatum* subspecies. Nevertheless, most ornithological authorities still recognize *anatum* and *tundrius* as valid subspecies (e.g. Avibase—the World Bird Database n.d.).

In the NWT, Peregrine Falcons nest in both the taiga and the tundra biomes and would traditionally have been separated by subspecies, but would now be called “ecotypes”. However, as Peregrine Falcons have very wide habitat and prey preferences and there are no significant life histories or genetic differences between taiga and tundra nesting birds, SARC considers all NWT Peregrine Falcons as simply *Falco peregrinus* with no sub specific designation for the purpose of SARC’s status assessment.

Description

The Peregrine Falcon is a medium- to large-sized falcon roughly the size of a crow (Figure 3). Wings are long, narrow and pointed. The tail is long and fairly broad. Females are significantly larger than males with little overlap in size between sexes. Morphometric data for Peregrine Falcons in the NWT are not available. A study around Rankin Inlet (Nunavut) found that the average (\pm standard deviation) weight for female tundra-type peregrines was 920 ± 55.3 g and 607 ± 42.4 g for males (Court *et al.* 1988). The average weight for Yukon River (Alaska) taiga-type females was 977 ± 76.4 g and males 652 ± 52.4 g. The average wing chord (wing width) of

western birds is 349.8 ± 5.80 mm for females and 306.0 ± 3.90 mm. Tail length is 170.3 ± 6.62 mm for females and 142.6 ± 6.12 mm for males. Populations are reasonably uniform in colour and size throughout the North American range with some clinal and individual variation; the northern tundra-types are generally paler than the southern taiga-types. Adults have bluish-grey upperparts and a bold, black facial stripe ("malar stripe") of varying width extending down from the eye. Underparts are whitish, grey or buffy with variable amounts of striping and barring. The underwing and under the tail are barred pale grey and black. There are no marked seasonal or sexual differences in feather colour. At hatch, chicks weigh 35-40 g and are covered in off-white, downy feathers which are gradually replaced by darker flight feathers. Juveniles are dark brown with heavy streaking and blotches on the undersides. The cere (waxy structure at base of the bill) and eye ring are yellow to yellow-orange in adults and bluish-white to greenish in juveniles. The feet are yellow in adults and bluish-grey to bluish-green in juveniles. Unless otherwise noted, this description is abstracted from White *et al.* (2020).

Figure 3. Adult male Peregrine Falcon representative of NWT boreal forest peregrines. Photo taken on the North Saskatchewan River, Alberta. Photo courtesy of Gordon Court.

Life Cycle and Reproduction

Number of Broods Annually

Peregrine Falcons breed only once per year, but may re-nest if the breeding attempt fails early in the reproductive cycle. However, Anctil *in* COSEWIC (2017) indicates that re-nesting rarely happens in Arctic Peregrine Falcons because of the short breeding season.

Eggs and Clutch Size

Eggs weigh about 50 g (Burnham *et al.* 2003) and are usually a cream-colour with warm brown blotches. The sex ratio of eggs is 1:1 (Burnham *et al.* 2003). Mean clutch sizes vary between years, but are generally between 3.0 and 3.8 eggs, often with fewer in the north. In captivity, if eggs are removed, a single female may lay as many as 16 – 20 eggs (White *et al.* 2020).

Incubation and Fledging

Both male and female Peregrine Falcons incubate eggs and the average incubation period is 34 days (Shank and Poole 2016). Following hatch, nestlings remain at the nest for 38 days on average (Shank and Poole 2016). Recently fledged birds remain in the nest site vicinity and continue to be fed by the adults for 5 – 6 weeks before undertaking their first migration (Cade 1960; review in Luensmann 2010). Both the male and female brood and provide food for young (Harris *et al.* 1975).

Breeding Period

All NWT Peregrine Falcons are migratory arriving in the NWT in April or May, depending on latitude. Males typically arrive at the nest site first. Egg-laying typically begins in the second week of May in southern NWT and the second week of June at high latitudes. Hatching typically varies from the third week of June at low latitudes to the third week of July in the mid-Arctic. Fledging occurs between the fourth week of July to the end of August (Shank and Poole 2016).

Productivity

Productivity is defined as the mean number of young fledged, or reaching an advanced nestling stage, per occupied² territory. However, there is methodological difficulty in establishing number of productive territories. Single surveys undertaken early in the breeding season will include occupied sites that fail later in the season. Single surveys during the late nestling period will record almost all occupied sites observed as successful. Hence, the denominator in productivity estimates is uncertain when survey effort and timing differ. A less ambiguous proxy for reproductive success is young per successful territory or mean brood size.

² "Occupied" means a nest site at which at least one adult bird was seen.

The average number of young is reported as 1 – 2 per territorial pair, but this varies widely from year to year from 0.0 to 3.0 (COSEWIC 2017). Females with elevated fattening rate in the pre-reproduction period initiate egg-laying earlier (Lamarre *et al.* 2017). At Rankin Inlet (Nunavut), nestlings that hatched later in the season had lower survival (Anctil *et al.* 2014) suggesting a clear advantage to earlier nesting.

Many factors influence number of young produced including egg and nestling mortality from inclement weather, differences in prey abundance, date of clutch initiation, predation, and nest site quality. In Arctic populations, breeding success is highly variable between years and appears to be dependent largely upon juvenile mortality caused by external events, such as heavy and/or extended rainfall, extreme low temperatures and black fly outbreaks (Bradley *et al.* 1997, Anctil *et al.* 2014, Carlzon *et al.* 2018, Lamarre *et al.* 2018). These factors can increase nestling mortality by as much as 50% (Anctil *et al.* 2014, Lamarre *et al.* 2018).

Age at First Breeding

Peregrine Falcons typically begin breeding at 2 - 3 years of age, although females often begin earlier than males (review in COSEWIC 2017). Peregrine Falcons are generally monogamous, however, observations of a single male providing food to two females has been documented (review in Luensmann 2010). The most relevant data for NWT Peregrine Falcons is likely from Rankin Inlet (Nunavut) where the mean recruitment age (age at first breeding) was four years (range 2 – 8) for males and three years (range 3 – 5) for females (Johnstone 1998).

Life Span and Survivorship

First year survival is generally assumed to be in the range of 40 – 50% (White *et al.* 2020). Annual survival rates of adults likely fall in the range of 80 – 85% for migrant individuals. Maximum recorded longevity for wild Peregrine Falcons is at least 20 years (White *et al.* 2020). At Rankin Inlet (Nunavut), annual survivorship was 81% for females and 85% for males (Court *et al.* 1988). Apparent survival of adult Peregrine Falcons at Rankin Inlet (Nunavut) was negatively affected by climatic conditions during the fall southward migration (Franke *et al.* 2011). White *et al.* (2020) indicates that territorial defense may result in mortalities, particularly when there is intense competition for nest sites and mates.

Generation Length

The estimated generation length for Canadian Peregrine Falcons calculated by COSEWIC (2017) is at least 6 years based on a minimum of 80% adult survival, age of first reproduction of 1, and the IUCN formula of $1/(\text{adult mortality}) + \text{age at first reproduction}$ (IUCN 2019). However, if age at first reproduction for NWT Peregrine Falcons is considered to be three years (see section on *Age at First Breeding*), then generation length should be at least eight years.

Physiology and Adaptability

Peregrine Falcons are found in a vast array of ecosystems worldwide highlighting their ability to adapt to a wide variety of local conditions. They may be one of the world's most adaptable bird species.

During the breeding season, Peregrine Falcons vigorously defend a territory against any intruders within approximately 200 m of the nest. A larger perimeter may be defended depending upon local conditions of prey abundance. Nest sites tend to be spaced out with inter-nest distances related to prey and nest site availability (White *et al.* 2020).

In literature, Peregrine Falcon home ranges are reported with an exceedingly wide range of values due to methodological and statistical differences. These values are also likely due, in part, to intrinsic variability (e.g., prey and breeding density). Early reports for Peregrine Falcon home range size consisted of estimates based on linear distance of observations from the nest. The review by Enderson and Craig (1997) indicate these distances as being 18 km or less. White and Nelson (1991) followed a male Peregrine Falcon by helicopter in Alaska and calculated a home range of 319 km² and a maximum straight-line distance from the nest of 14.6 km.

Later estimates of home range size have been based primarily on radio- and satellite-telemetry. Using radio-tracking, Enderson and Craig (1997) found home range sizes of 308 – 1,508 km² in Colorado, while in South Africa, home ranges were only 90 – 192 km² in size (Jenkins and Benn 1998). Using satellite telemetry, Burnham *et al.* (2012) found summer home ranges in Greenland to vary between 23 km² and 3,021 km² depending on accuracy of locations and analysis technique. In northern Russia, average home ranges were reported using satellite data as only 98 km² in one study (Sokolov *et al.* 2014) and in another as much as 1,175 km² (Ganusevich *et al.* 2004). However, the latter is likely an overestimate resulting from using less precise satellite locations (Sokolov *et al.* 2014). DeSorbo *et al.* (2018) filtered out low quality satellite-telemetry locations from female Peregrine Falcons in New Hampshire and found 50% of occurrences within an area of 597 – 1,036 km² and 95% within 8,626 – 12,670 km². Burnham *et al.* (2012) conclude that satellite telemetry is better suited to migration studies than to home range area analysis.

Interactions

Nest Sites

Peregrine Falcons usually lay their eggs directly on rocky ledges or along steep slopes or cliffs in grass, dirt, sand or gravel. Small depressions are created in the substrate called a “scrape”. Tall cliffs and open views benefit Peregrine Falcons by providing perches for hunting or defense from intruders (Jenkins 2000). They may also use stick nests built by Rough-legged Hawks (*Buteo lagopus*), Golden Eagles (*Aquila chrysaetos*), Bald Eagles (*Haliaeetus leucocephalus*) or

Common Ravens (*Corvus corax*), but do not build their own stick nests. Nest sites are preferred with a moderate degree of overhang protection (from rainfall) and predation (Wightman and Fuller 2005). Only about 14% of occupied peregrine nests recorded along the Mackenzie River in the NWT were stick nests (Carrière and Matthews 2013).

Interactions with Prey Species

Peregrine Falcon diet consists almost entirely of a wide variety of birds representative of the local avian species diversity, although mammals, insects and reptiles (south of the NWT) are occasionally taken. A review by White *et al.* (2020) indicates diets contained a minimum of 47 species in Alaska, 28 at Rankin Inlet (Nunavut), 11 in Greenland, and 60 in the Alaskan taiga. Hodson (2018) collected 507 prey remains from Mackenzie River nest sites. There were 55 species in the 307 samples that could be identified to species. Shorebirds comprised 37% of the samples, diving ducks 25% and passerines 21% (perching birds like songbirds and sparrows). Other bird groups made up the remainder. The most commonly taken species were Lesser Scaup (*Aythya affinus*) (13.8%), Lesser Yellowlegs (*Tringa flavipes*) (11.5%) and Northern Flicker (*Colaptes auratus*) (5.8%). The only local birds missing from the diet were ones too large for Peregrine Falcons to handle. Hodson (2018) recorded only one mammal in the sample. Rodents comprise a significant proportion of the diet during peak lemming years at Rankin Inlet (Nunavut) (Court *et al.* 1988, Bradley and Oliphant 1991).

Interactions with Parasites

White *et al.* (2020) lists numerous organisms parasitizing Peregrine Falcons. Wong *et al.* (1990) lists two species of nematodes found in Peregrine Falcons, neither of which have been found in the NWT. Wheeler and Threlfall (*in* White *et al.* 2020) list four species of Phthiraptera (chewing lice), Siphonaptera (fleas), and several dipterans (flies) as ectoparasites of Peregrine Falcons. The population effects of these species are not clear.

At Rankin Inlet (Nunavut), adult black flies (Diptera: Simuliidae) were seen as a major source of nestling mortality (30- 50%) during outbreak years linked to warm spells and higher than normal precipitation (Franke *et al.* 2016, Lamarre *et al.* 2018). It is suggested that climate change may exacerbate black fly induced nestling mortality. The effect of black flies on NWT Peregrine Falcons has not been investigated.

Hodson (2018) noted unidentified maggots infesting the ears of Mackenzie Valley Peregrine Falcon, a condition termed “myiasis”. A gaping hole was left in the ear canal following falcon maturation and departure from the nest. Effects on survival and fitness are unclear. Based on repeated surveys Hodson concludes the problem has become worse since about 2000 (Hodson pers. comm. 2020). The description is similar to infestations by larvae of the bird blowfly *Protocalliphora avium* (Diptera: Calliphoridae) on nestling Gyrfalcons (*Falco rusticolus*) in the Central Canadian Arctic reported by Poole and Bromley (1988).

Interactions with Predators

There is very little predation on adult Peregrine Falcons. However, Great Horned Owls (*Bubo virginianus*) and Golden Eagles sometimes take Peregrine Falcons, particularly juveniles and nestlings. Both species occasionally nest in close proximity to Peregrine Falcon nests (White *et al.* 2020). Eggs and nestlings may also be susceptible to predation by mammals such as foxes (*Vulpes vulpes*, *V. lagopus*), bears (*Ursus americanus*, *U. arctos*) and wolverines (*Gulo gulo*) at easily accessible nest locations (Cade 1960; review in Luensmann 2010).

Ecological Function

By examining ecosystems in which predators have been removed, Estes *et al.* (2011) documented the key role that apex predators play in shaping local ecologies through trophic cascades. There was no research undertaken describing the ecology of NWT Peregrine Falcon breeding areas during the DDT-induced declines that could be compared with the current situation following population recovery. Nevertheless, NWT Peregrine Falcons are clearly preying upon many birds and can be assumed to be having a significant, but currently unknown, effect on local food chains and the health of local ecosystems.

PLACE

Distribution

World and North American Distribution

The Peregrine Falcon is among the most widespread of the world's wild birds (Figure 4). It is found on every continent, except Antarctica, and in all terrestrial biomes, although they may be rare or absent in deserts, dry shrub lands and tropical forests.

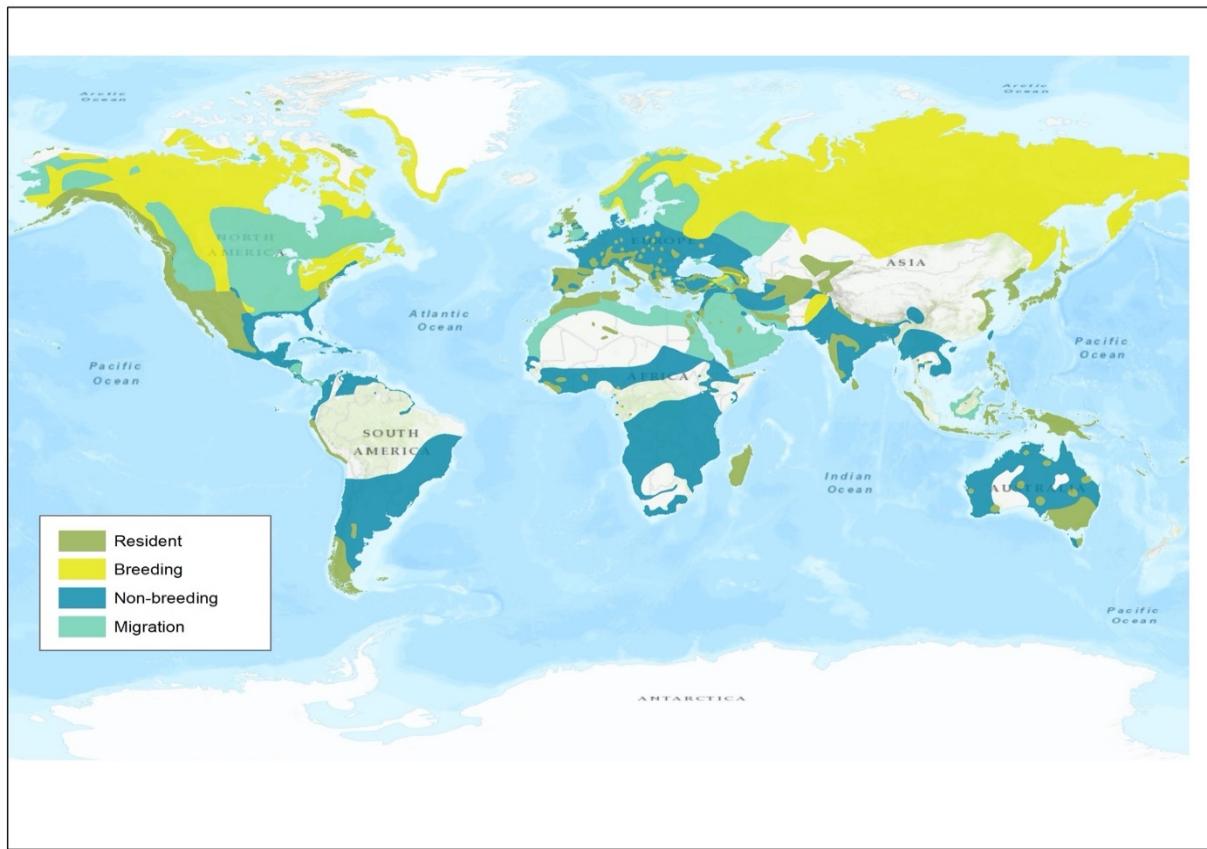


Figure 4. Global distribution of Peregrine Falcon. Geospatial data courtesy of BirdLife International and Handbook of Birds of the World 2019. Map courtesy B. Fournier, ENR.

Figure 5. Breeding range of Peregrine Falcons in North America. This map accurately reflects the full extent of the Peregrine Falcons' breeding range in southern NWT and northern Alberta where the species is known to be present (see Figure 6). Geospatial data courtesy of Environment and Climate Change Canada (ECCC). Map courtesy B. Fournier, ENR.

North American Peregrine Falcons formerly bred throughout much of Canada and the US, but the range was significantly reduced during the population crash of the 1950s – 1970s (see section on *Historical Population Decline*). This resulted in the near-complete loss of Peregrine Falcons in central and southern Canada and in the mid-western and eastern United States. Peregrine Falcons are now distributed widely throughout the western United States and are becoming increasingly common in the northeastern and midwestern United States, particularly

in urban areas (Figure 5). Over 60% of the *anatum/tundrius* breeding range in North America is in Canada (Environment Canada 2015).

NWT Distribution

Peregrine Falcons are widely distributed across the NWT during the breeding and migratory seasons (Figure 6), although densities differ geographically, and many areas have been insufficiently surveyed. Local nesting densities are determined primarily by suitable nest site locations and prey availability. A total of 61% of Peregrine Falcon known nest sites and 64% of eBird sightings of nests and individuals (GBIF 2021) are located above tree line (Figure 6). The NWT population is contiguous with those of Nunavut, Yukon and Alberta. Although Peregrine Falcon occur in British Columbia, the population does not appear to be contiguous with the NWT population (see Figure 5).

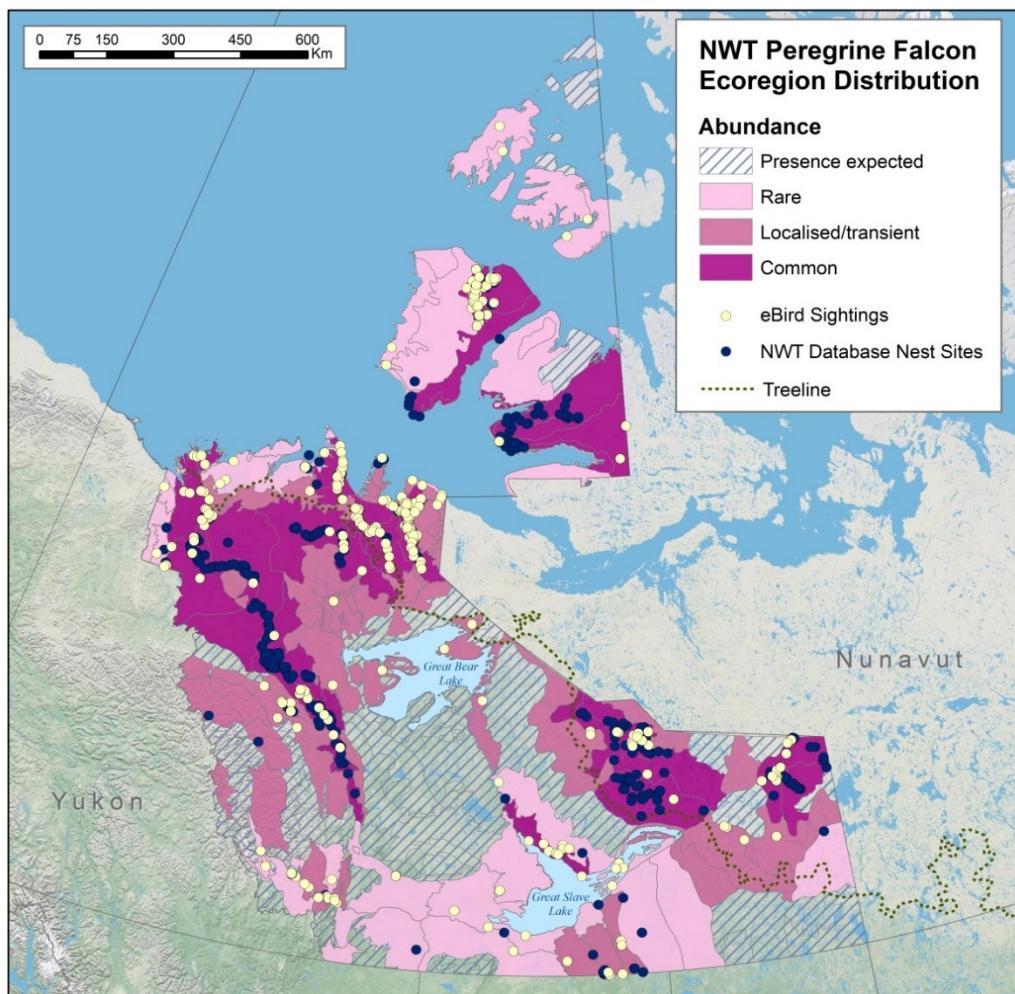


Figure 6. Peregrine Falcon sightings (nests and individuals) in the NWT. Yellow dots represent eBird sightings (GBIF 2021) where people have either observed an individual or found a nest, and navy-blue dots represent NU/NWT Raptor Database nest site locations (ENR unpubl. data 2020). Estimated Peregrine Falcon density is shown in Level II ecoregions (Chowns 2013). Map courtesy B. Fournier, ENR.

The Species at Risk Committee (SARC) defines the ‘extent of occurrence’ (EO) as ‘the area included in a polygon without concave angles that encompasses the geographic distribution of all known populations of a species’ (SARC 2020). The extent of occurrence for Peregrine Falcon in the NWT (the minimum convex hull less the areas of the Beaufort Sea and major lakes) is about 1,122,267 km² (= 95% of NWT land area) for sightings and nest sites together and 1,042,287 km² (=88% of NWT land area) for nest sites only (breeding range).

The “index of area of occupancy” (IAO) is a measure that aims to provide an estimate of area of occupancy that is not dependent on scale. The IAO is measured as the surface area of 2 x 2 km grid cells that intersect the actual area occupied by the wildlife species (i.e., the biological area of occupancy). The IAO for Peregrine Falcons in the NWT for nest sites from the NU/NWT Raptor Database (breeding range) is about 163,780 km² (=14% of NWT land area). Peregrine Falcons are widespread throughout the NWT, but records are sparsely distributed with some areas of dense occupation due to high availability of nesting habitat. This also reflects that much of the NWT has been poorly surveyed for Peregrine Falcons.

Locations

SARC defines ‘location’ as ‘a geographically or ecologically distinct area in which a single threatening event can rapidly affect all individuals of the species present’. The size of the location depends on the area covered by the threatening event and may include part of one or many subpopulations. Where a species is affected by more than one threatening event, location should be defined by considering the most serious plausible threat (SARC 2015).

Peregrine Falcon ‘locations’ are either nest sites that are currently occupied or have previously been occupied. Locations are discovered in formal surveys by foot, boat or aircraft. The NU/NWT Raptor Database records nest locations and visit histories for Peregrine Falcons along with other raptors (Peck *et al.* 2012). eBird sightings are opportunistic observations of Peregrine Falcons which may or may not be associated with nest site locations and they are not included in the NU/NWT Raptor Database. In areas with no survey information, no locations were determined (i.e., negative location data).

Currently, there are 647 unique Peregrine Falcon nest locations in the NU/NWT Raptor Database (ENR unpubl. data 2020) not counting alternative nest sites (from eBird sightings). A total of 393 sites are above treeline and 254 locations are below treeline. Most of these location records are along rivers (e.g., Thelon, Anderson, Horton, Hornaday, Thomsen, Mackenzie) (Figure 6). The distribution map is somewhat biased since surveys are targeted in areas of high nest density. Large areas in the central and southeastern parts of the NWT have not been adequately surveyed but are expected to have low density of Peregrine Falcon nests.

Search Effort

Data on Peregrine Falcon locations in the NWT are from eBird and dedicated raptor surveys. eBird sightings are usually opportunistic sightings made by recreationalists and are often not at nest sites. Dedicated surveys of nesting raptors are by fixed-wing aircraft, helicopter, boat and on foot (Table 2). Attempts are made to check all known sites in the locality as well as likely-looking unknown sites. Nest site records kept by the Nunavut and NWT governments are recorded in the NU/NWT Raptor Database (Peck *et al.* 2012) and contain information on the location of the nest site, species present, status (e.g., occupied, unoccupied, number of adults, eggs or nestlings), observers, and explanatory notes. Unoccupied sites represent absence of breeding birds. Each observation at a nest site is considered as a “nest visit”. Because of the diverse survey methods employed and variation in reporting, it is not possible to provide an estimate of survey effort in terms of hours spent or kilometers surveyed. Emphasis has been on establishing trends by repeating surveys in areas of known raptor breeding concentrations. Consequently, much of the NWT has not been systematically surveyed.

The NU/NWT Raptor Database contains a total of 3,289 nest visits at 647 NWT Peregrine Falcon nest locations (not counting alternatives). The visit period covers sporadic samples prior to the 1970s to more systematic samples until 2020 (inclusive) (Table 1). The single greatest effort in one year was 322 nest visits in 2010. The most consistently surveyed area has been the Mackenzie Valley, which has been surveyed in 22 years between 1966 and 2020 (Table 3).

Table 1. Number of NWT nest visits by decade. Repeated visits to the same site in a single year are not compiled. Data from NU/NWT Raptor Database (ENR unpubl. data 2020).

Decade	Nest Visits
Prior to 1970	77
1970 -1979	332
1980 - 1989	608
1990 - 1999	531
2000 – 2009	809
2010 – 2020 (11 years)	933

Figure 7 illustrate the percentage and total number of nest visits since the 1960s. Nearly 39% (235 sites) of nest locations had only one visit for the entire period covered in the database, and 76% (462 sites) had seven (7) visits or fewer. This suggests limitations in establishing trends for individual nest sites (see section on *Habitat Trends*).

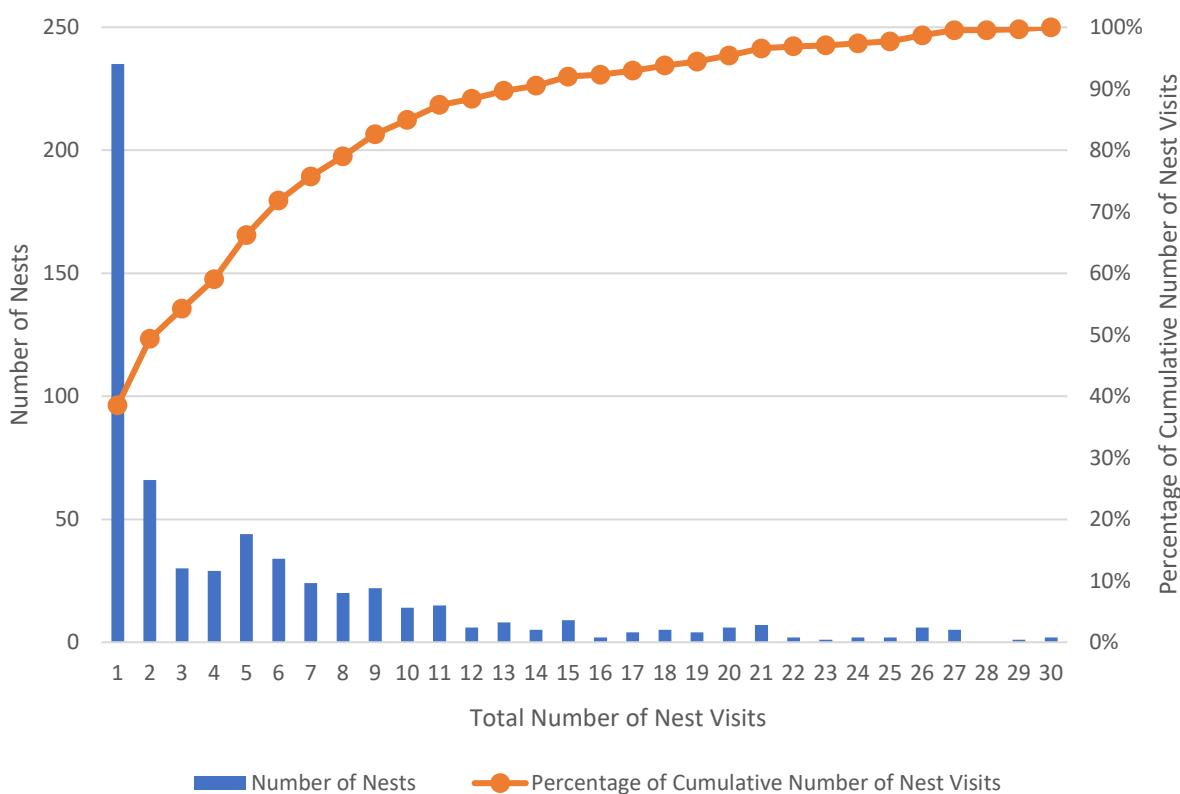


Figure 7. Percentage of cumulative number of nest visits to individual nest sites. Data from NU/NWT Raptor Database 2021.

Distribution Trends

The population decline in Peregrine Falcons from the 1950s to the 1970s (see section on *Historical Population Decline*) is not known to have caused significant contractions in the range of NWT Peregrine Falcons, but data are lacking. Conversely, subsequent population increases may not have been associated with significant range expansions in the NWT.

Movements

Peregrinus means “foreigner” in Latin (Glosbe - the multilingual online dictionary n.d.), reflecting that Peregrine Falcons are a mobile species with many populations undertaking long seasonal migrations. Whereas Peregrine Falcons in temperate climates may be resident year-round, all NWT Peregrine Falcons migrate south during the non-breeding season (roughly October – April).

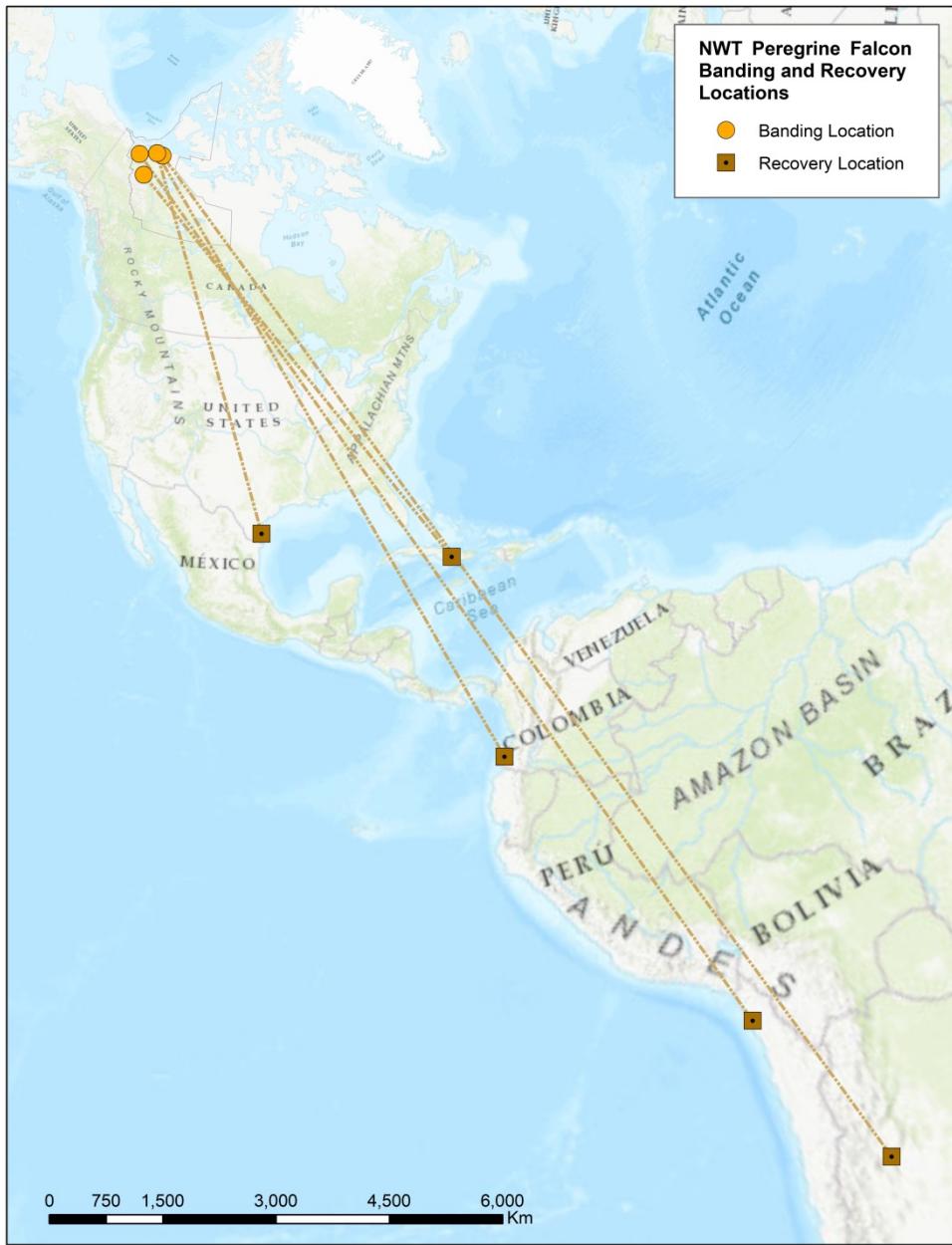


Figure 8. Capture (yellow dots, northern end) and recapture (yellow squares, southern end) locations of Peregrine Falcons banded in the NWT between 1969 and 1977 (Dunn *et al.* 2009). The line between the points does not indicate path of migration. Data courtesy Environment and Climate Change Canada (ECCC). Map courtesy B. Fournier, ENR.

Peregrine Falcon migration can be monitored by band returns or telemetry. Peregrine Falcons from the NWT typically spend the winter in Texas, Mexico, the Caribbean or in Central and South America. Figure 8 shows the banding and winter recapture locations of the only five NWT-banded birds to have been recaptured until 1977. No recent data are available because of limited banding of Peregrine Falcons in the NWT in recent years. The maximum linear distance recorded for an NWT Peregrine Falcon was from an individual banded near the

Anderson River in the NWT that wintered 11,969 km south in Argentina (encounter record #8 in Dunn *et al.* 2009). Average southward migration of Peregrine Falcons fitted with satellite transmitters at a number of North American locations was a straight-line distance of 8,624 km at a rate of 172 km/day (Fuller *et al.* 1998). Peregrine Falcons satellite tagged on wintering grounds on the Gulf of Mexico moved north to NWT and NU with migration distances between 4,580 and 5,840 km over an average of 30 days (McGrady *et al.* 2002).

Characteristically, Peregrine Falcons return to their general natal area. Of 12 Peregrine Falcons banded as nestlings and encountered three or more years later during the breeding season, half were within 50 km of their natal site. The maximum distance was a bird banded in northern Yukon which moved 757 km from the natal site to its breeding site (Dunn *et al.* 2009). Alberta Parks and Environment (2019) indicates that breeding dispersal may be as great as 1,800 km for Alberta Peregrine Falcons. This suggests that Peregrine Falcons have considerable dispersal capability if nesting opportunities are not available in their natal area.

Habitat Requirements

North American Peregrine Falcons can be found in almost all ecological regions (White *et al.* 2020). At smaller scales, breeding Peregrine Falcons show specific preferences. Although Peregrine Falcons prefer cliffs for nesting, cliff habitat is not an absolute requirement. In 2010, Carrière and Matthews (2013) found 76% of Mackenzie River nest sites were on cliffs 15 – 50 m in height with the remainder nesting in stick nests or on flatter areas (N = 95 nest sites). Most nests (63%) were on rocky ledges, 10% on grassy ledges, 14% stick nests and 13% on the ground. They found most (63%) nest sites to be south, south-east or south-west facing. Bruggeman *et al.* (2016) found that sites along the Colville River, Alaska with higher productivity were associated with south-facing cliffs having early snowmelt located high above the river and surrounded by adequate prey habitat. Galipeau *et al.* (2019) built a habitat selection model for northern Baffin Island and found that steep, rugged terrain, located close to water, having southern aspects and adjacency to productive habitat explained nest site selection at three spatial scales (landscape, territory, nest site). Many other studies have arrived at essentially the same conclusions; see Galipeau *et al.* (2019) for a recent review.

Areas of habitat with high concentrations of prey species are considered essential to Peregrine Falcons. Open areas where avian prey are vulnerable, including pastures, grasslands, mountain valleys, and gorges, are highly beneficial to Peregrine Falcons (review in Luensmann 2010). Peregrine Falcons are highly territorial toward other Peregrine Falcons; however, higher densities occur where there is greater prey abundance (White *et al.* 2002). Nest sites that are consistently used year after year are associated with higher and more regular productivity indicating higher quality (Wightman and Fuller 2006).

Little is known about habitat preference during migration and on the wintering grounds in Latin America, other than they utilize a wide array of habitats and occupy cliffs in relatively open habitats ranging from low-elevation grasslands to high-elevation pine (*Pinus spp.*) forests in all seral stages (White *et al.* 2020). Using only higher accuracy satellite-transmitter locations, McGrady *et al.* (2002) found wintering home ranges along the Gulf of Mexico averaging 169 km² (90% minimum convex polygon). The habitat was mostly sandy and grass covered beaches with large numbers of shorebirds. Burnham *et al.* (2012) found larger winter home ranges, but there were not enough high-quality satellite-transmitter locations to establish winter home range size with any certainty. All of the locations were in open areas of human disturbance.

Habitat Availability

Habitat availability for Peregrine Falcons in the NWT has not been quantified. At this time, habitat availability is not thought to be a limiting factor.

Habitat Trends

It is unlikely that NWT Peregrine Falcon habitat in the taiga has changed substantially in the last few decades, or that it is likely to change in the foreseeable future. However, climate change is resulting in changes in spring weather, riverbank or cliff slumping, and expansion of shrubs in Arctic and alpine tundra (See *Threat* section, e.g., Myers-Smith *et al.* 2011). These may reduce availability of cliff nesting and open hunting habitat that Peregrine Falcons prefer.

Habitat Fragmentation

Peregrine Falcons are highly mobile, so habitat fragmentation is unlikely to affect NWT Peregrine Falcons.

POPULATION

Abundance

Peregrine Falcons show strong nest site fidelity and are generally quite visible while territorial during the nesting period, so the number of occupied nest sites or occupancy (proportion of known nests occupied) are often used as proxies for abundance. However, counting occupied sites or determining occupancy can be biased by absence of multiple annual surveys, differences in survey type and effort, and detection error, which are often not adequately described in written survey results. Franke *et al.* (2020) offer suggestions for international standardization of survey methods and reporting. The list of all known NWT Peregrine Falcon surveys is provided in Table 2, based on information recorded in the NU/NWT Raptor Database.

Table 2. Known surveys of Peregrine Falcons in the Northwest Territories, 1966 - 2019. The methods reflect search methodology and not whether the nest sites were visited on foot.

Year	Area	Method	Citations
1966	Mackenzie River	Not specified	Cade and Fyfe (1970)
1966 - 2018	Mackenzie River	Boat and helicopter	Hodson (2018)
1968	Horton River	Not specified (possibly Fixed-wing, boat)	Fyfe <i>et al.</i> (1976)
1969	Mackenzie River	Not specified	Cade and Fyfe (1970)
1970	Mackenzie River	Not specified	Cade and Fyfe (1970)
1971	Mackenzie River	Not specified	Referenced in Bromley and Matthews (1985)
1972	Campbell Hills	Not specified	Beebe (1974) in (Fyfe <i>et al.</i> 1976)
1973	Mackenzie River	Not specified	Referenced in Bromley and Matthews (1985)
1973	Horton River	Not specified	Fyfe <i>et al.</i> (1976), Fyfe and Olendorff (1976)
1974	Mackenzie River	Not specified	Referenced in Bromley and Matthews (1985)
1975	Mackenzie River	Aircraft. ground	Fyfe <i>et al.</i> (1976)
1975	Banks Island	Fixed-wing, ground, helicopter	Fyfe <i>et al.</i> (1976)
1975	Horton River	Fixed-wing, boat	Fyfe <i>et al.</i> (1976)
1977	Mackenzie River	Not specified	Referenced in Bromley and Matthews (1985)
1978	Mackenzie River	Not specified	Referenced in Bromley and Matthews (1985)
1979	Mackenzie River	Not specified	Referenced in Bromley and Matthews (1985)
1980	Mackenzie River	Not specified	White <i>et al.</i> (1990)
1980	Anderson/Horton	Not specified	White <i>et al.</i> (1990)
1980 - 1988	Enbridge Norman Wells Pipeline	Ground, fixed-wing, helicopter	Matthews (1989)
1981	Mackenzie River	Not specified	Referenced in Bromley and Matthews (1985)
1983	Mackenzie River	Helicopter	Referenced in Bromley and Matthews (1985)
1984	Mackenzie River	Helicopter	Referenced in Bromley and Matthews (1985)
1985-1986	Mackenzie River	Helicopter	Murphy (1990)
1988 & 1990	Tuktut Nogait National Park	Ground	Obst (2003)
1990	Mackenzie River	Boat and helicopter	Holroyd and Banasch (1996)
1994 - 2017	Daring Lake	Ground	Unpublished Excel spreadsheet

			compiled by Joachim Obst and on file with NWT ENR
1995	Mackenzie River	Helicopter, boat, ground	Shank (2004)
1998 - 2010	Diavik and Ekati Mine sites	Helicopter	Coulton <i>et al.</i> (2013)
2000	Mackenzie River	Boat and helicopter	Rowell <i>et al.</i> (2003b)
2000	Hornaday River, Tuktut Nogait National Park	Boat and ground	Obst (2003)
2005	Mackenzie River	Boat and helicopter	Holroyd and Banasch (2012)
2010	Mackenzie River	Boat and helicopter	Carrière and Matthews (2013)
2010	Hornaday River, Tuktut Nogait National Park	Helicopter	Holroyd (2010)
2015	Hornaday River, Tuktut Nogait National Park	Helicopter	Holroyd and Frandsen (2015)
2010 & 2020	Ekati/Diavik/Daring Lake	Helicopter and ground	Unpublished Excel spreadsheets on file with NWT ENR
2016 - 2019	Mackenzie Valley	Boat	Hodson (2018) and unpublished data from K. Hodson on file with NWT ENR

The most consistent trend data is from repeated surveys of the Mackenzie Valley for the 45 years between 1966 and 2019.

Using a mark-recapture model for banded hatch-year Peregrine Falcons, and a number of assumptions, Franke (2016) estimated the total number of breeding age Peregrine Falcons north of 54° (US, Canada and Greenland) at 60,000 in 2000. Based on Franke's (2016) assessment, COSEWIC estimated 35,100 mature Peregrine Falcons for all of Canada in 2017.

The number of Peregrine Falcons in the NWT can only be roughly estimated. The NU/NWT Raptor Database currently records 647 unique nest sites. Assuming an occupancy rate of 71% (see section on *Population Recovery*), this suggests that known sites are currently occupied by about 435 pairs in any given year. If one-quarter to one-half of the Peregrine Falcon nesting sites in the NWT are known and the non-breeding, non-territorial (floater) population equals the number of breeders (Franke 2016, White *et al.* 2020), a conservative estimate would be 3,500 – 7,000 adult Peregrine Falcons in the NWT.

Population Dynamics

Clutch Size in NWT

The NU/NWT Raptor Database records 242 Peregrine Falcon nest visits in which eggs were counted with mean clutch size of 2.6 (± 0.9 SD). A clutch size of four was most common (Figure 9).

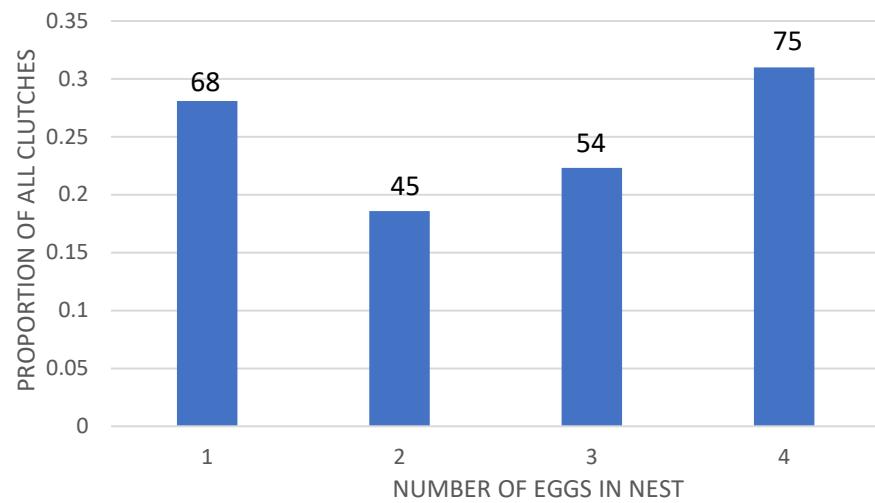


Figure 9. The proportion of different clutch sizes in NWT Peregrine Falcon nests in which eggs were recorded. The number above the bar is number of observations. Data from NU/NWT Raptor Database 2021.

Brood Size

The NU/NWT Raptor Database records 1,195 nest site visits in which young were counted with an average brood size of 2.4 (± 0.9 SD) (Figure 10).

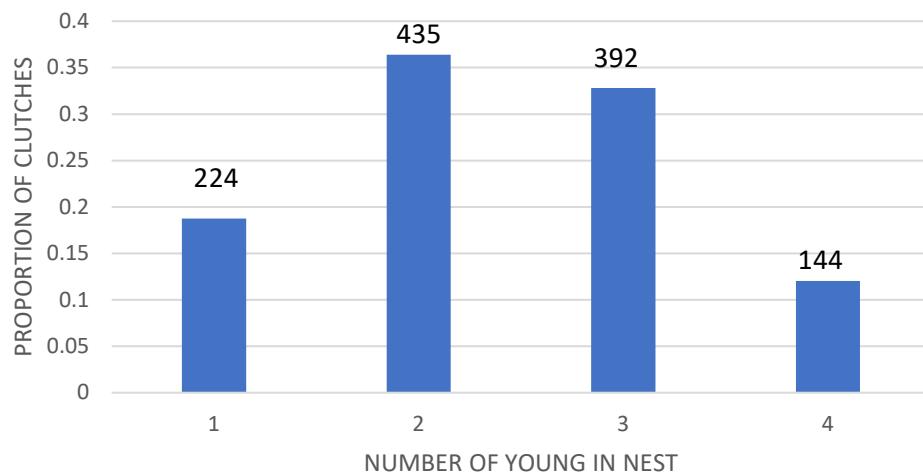


Figure 10. The proportion of different brood sizes from 1,195 nest visits in which young were present. The number above the bar is number of observations. Data from NWT/NU Raptor Database 2021.

There was no apparent trend in brood size in the 1,195 productive nest sites in which young could be counted over the 55 years between 1965 and 2019 (Figure 11).

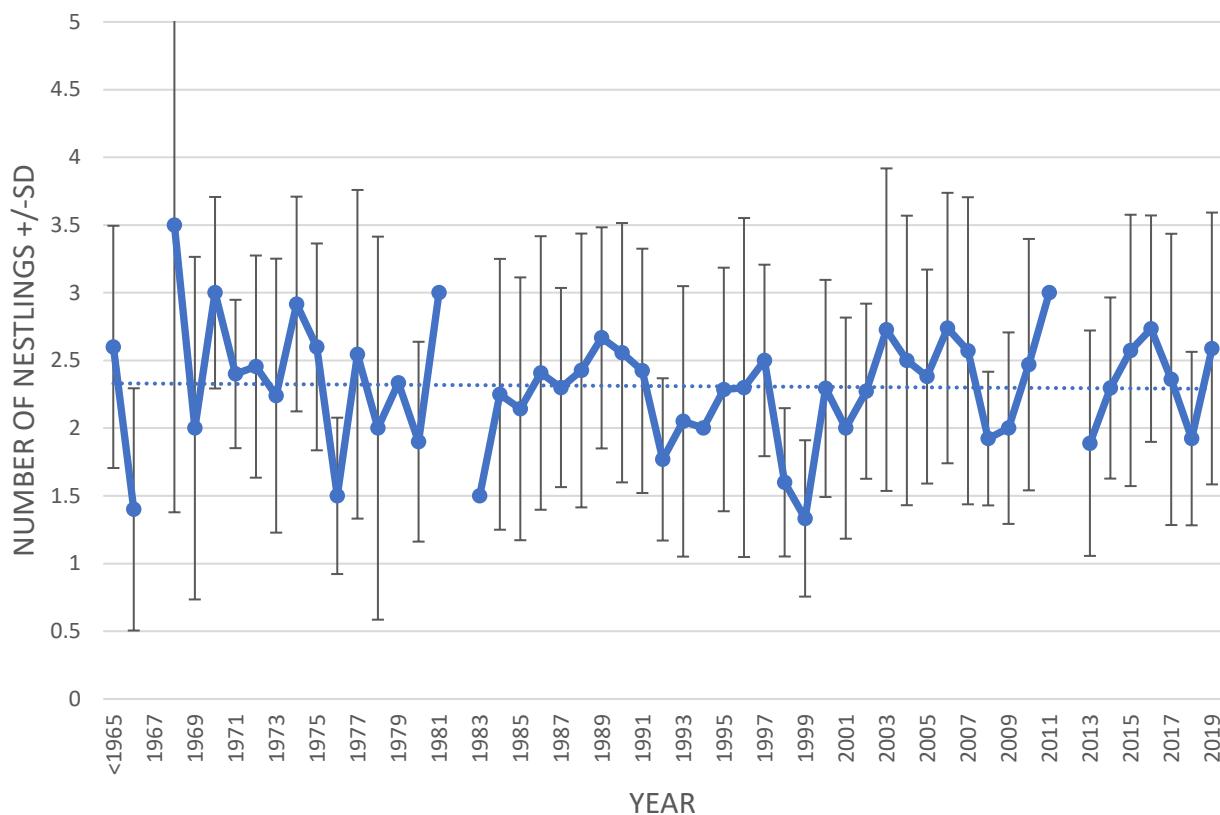


Figure 11. Mean (\pm SD) brood size at 1,195 productive sites from 1965 to 2019. Data from NU/NWT Raptor Database 2021.

Trends and Fluctuations

Historical Population Decline

Peregrine Falcon populations worldwide crashed dramatically in the 1950s through the late 1970s (Hickey 1969). Peakall (1993) provides a comprehensive historical summary of the linkage of organochlorine pesticides to the worldwide declines. During the 1950s, an abnormal number of broken eggs were being found in British Peregrine Falcon nests (Ratcliffe 1967). By the mid-1960s it became clear that egg-shell thinning was the cause of the breakage and thinning greater than 17 – 18% resulted in Peregrine Falcon population declines. The first signs of egg-shell thinning occurred as early as 1947. By 1971 a negative correlation was established between concentration of DDE (the metabolite of DDT) in egg contents and the thickness of the shell. Experimental work on American Kestrels (*Falco sparverius*) determined the causal relationship beyond doubt. Because of biomagnification of contaminants, raptors are known to

be particularly sensitive (González-Rubio *et al.* 2020), whereas avian species lower on the food chain were much less susceptible.

By the 1970s, Peregrine Falcons were extirpated in the United States east of the Mississippi River (Fyfe *et al.* 1976). The decline of Peregrine Falcons was not as pronounced in northern populations (review in Franke *et al.* 2020). There are no population estimates for NWT Peregrine Falcons prior to the DDT-induced decline. Based on occupancy of historically known sites relative to 1975, Fyfe *et al.* (1976) generalized a continuing decline in the Canadian Arctic of approximately 60%, a decline of 33% along the Mackenzie River and a 50% decline in other western boreal populations. Surveys suggest that the NWT population was at its lowest in the mid-1980s (see section on *Population Recovery*).

Population Recovery

Use of DDT was banned in the United States in 1972 and phased out in Canada in the mid-1970s (Environment Canada n.d.). Agricultural use worldwide was prohibited in 2001 by the Stockholm Convention on Persistent Organic Pollutants, although use for disease vector control is still permitted in exceptional cases (UNEP 2017). van den Berg (2008) reported that in 2008 there was no use of DDT reported in the Americas, with the possible exception of the Dominican Republic. However, Venezuela notified the Convention's DDT Register in 2009 that they reserved the right to use, but not produce, DDT for disease control. Most use now is in India and Sub-Saharan Africa with global production of 4,550 tonnes.

There are no data on DDE residues in NWT Peregrine Falcons, but following the ban on DDT, DDE residues in Peregrine Falcon eggs collected in Alberta plummeted by nearly 80% (Alberta Environment and Parks 2019, Figure 12) and declined in eggs and blood plasma at Rankin Inlet (Nunavut) (Court *et al.* 1990, Johnstone *et al.* 1996, Franke *et al.* 2010). Remaining levels of DDE are likely due to its long-term persistence in the environment rather than accumulation from new sources. However, eggshell thicknesses have not shown such a robust response. There was no apparent increase in thickness at Rankin Inlet (Nunavut) between the early 1980s (Court *et al.* 1990) and the late 1990s (Johnstone *et al.* 1996). In Greenland, Peregrine Falcon eggshell thickness has been steadily increasing, but it is not expected to reach pre-DDT levels until about 2034 (Falk *et al.* 2018). It is expected that these trends apply broadly to NWT Peregrine Falcons.

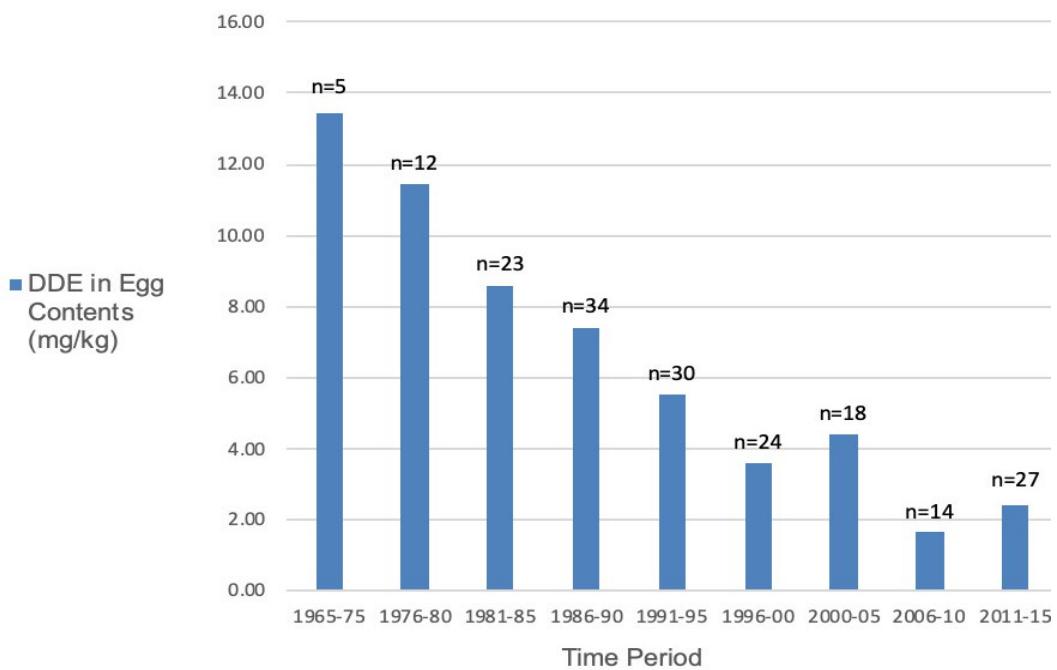


Figure 12. Decline in DDE residues in Peregrine Falcon eggs collected in Alberta (Alberta Environment and Parks 2019). Figure courtesy of Government of Alberta (Reproduced with permission).

The decline in pollutants, together with captive breeding and reintroduction efforts, gradually resulted in increasing Peregrine Falcon abundance across North America (Cade and Burnham 2003). Simultaneously, populations of other raptors (e.g., Bald Eagles, Ospreys (*Pandion haliaetus*)) also began to rebound. Trends at both eastern and western US migration monitoring stations (hawk watches) showed statistically significant increases in number of Peregrine Falcon sightings up until the early 2000s (Hoffman and Smith 2003, Farmer *et al.* 2007). The Breeding Bird Survey indicates an annual increase in Canadian Peregrine Falcons of 11.4% (95% CI = -20.5 to 54.4) from 2005 – 2015 (USGS n.d.). Ambrose *et al.* (2016) documented an increase number of territories and reproductive metrics in Alaskan Peregrine Falcons during the 1970s and 1980s with a gradual stabilization in the 2000s. Franke *et al.* (2020) conclude that northern Peregrine Falcon populations worldwide are now generally stable.

Trend in proportion of Peregrine Falcon nest sites seen to be occupied can be considered as a rough proxy for population performance (i.e., a combination population size and breeding success). Figure 13 shows the proportion of sites occupied from 1965 – 2020 based on 3,289 nest visits recorded in the NU/NWT Raptor Database. The 5-year moving average suggests that occupancy declined through the 1960s, 1970s and early 1980s, reaching a low point in 1983 when it increased until 1998 and has plateaued to 2020. The mean nest occupancy over the 55 years is 71%. Proportions in the 1960s are biased upwards because nearly all sightings were new records of occupied nests.

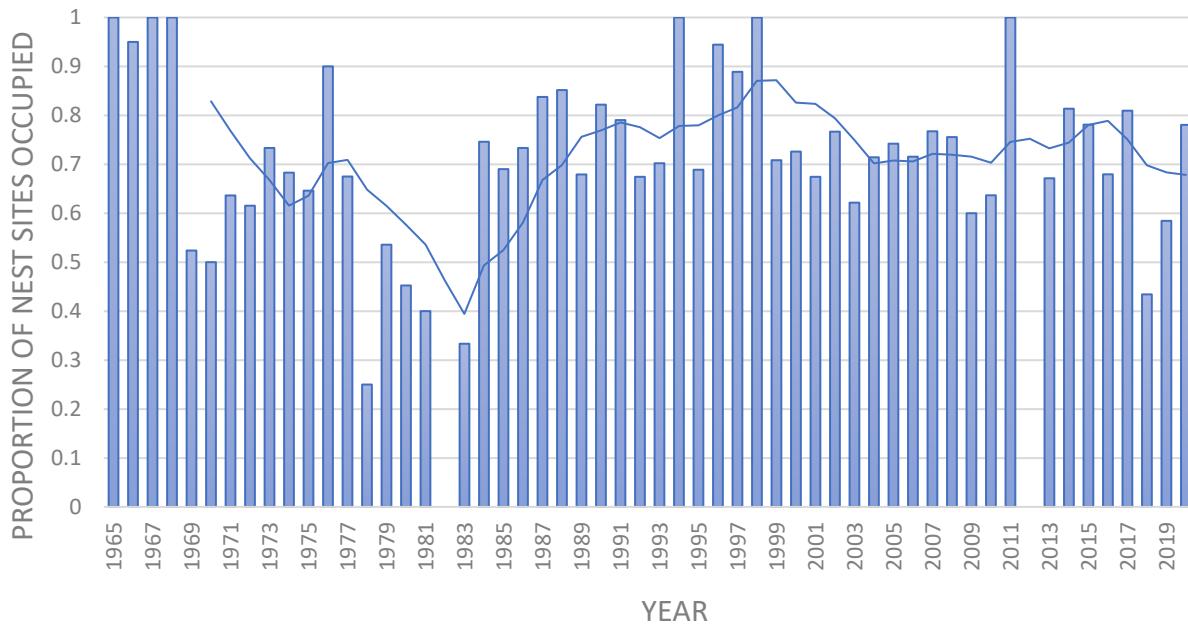


Figure 13. Proportion of nest sites occupied 1965 – 2020. The trend-line is the 5-year moving average. Data from NWT/NU Raptor Database 2021.

The most consistent survey data in the NWT are from the Mackenzie Valley. Helicopter and boat surveys were summarized by Carrière and Matthews (2013). The boat component of the surveys is described in more detail by Hodson (2018) (Table 3). Both helicopter and boat datasets show that the number of occupied and productive sites in the Mackenzie Valley increased dramatically from the late 1960s until 2010 and essentially plateaued until 2020. The percentage of productive sites varied between years but showed no clear trend. The increasing number of productive sites has resulted in a marked increase in production since the mid-1980s (Figure 14). During surveys, Peregrine Falcons perched along river banks and cliffs often exhibit territorial or defensive behavior making them difficult to miss (Carrière pers. comm. 2022). Therefore, these increases are likely a result of recovery from population declines due to DDT rather than an artefact of survey effort and nest site detectability (Carrière pers. comm. 2022).

Table 3. Occupied and productive Peregrine Falcon sites in the Mackenzie Valley 1966 – 2018. The surveys reported by Carrière and Matthews (2013) were done by helicopter and by boat. The surveys reported by Hodson were all done by boat except for 1975, 1980 and 1985 which were done by helicopter.

Year	Hodson (2018)			Carrière and Matthews (2013)		
	Occupied	Productive	% Productive	Occupied	Productive	% Productive
1966	12	12	100			
1969	8	8	100			
1970	9	3	33	9	2	22
1971	8	5	63			
1972	7	7	100			
1975	23			24	16	67
1980	19			20	10	50
1985	45			45	36	80
1990	37	34	92	88	70	80
1995	35	28	80	83	58	70
2000	28	21	75	80	37	46
2005	65	60	92	112	76	68
2010	75	65	87	141	81	57
2011	60	51	85			
2013	52	37	71			
2014	48	33	69			
2015	68	52	76			
2016	61	54	89			
2017	54	46	85			
2018	40	29	73			

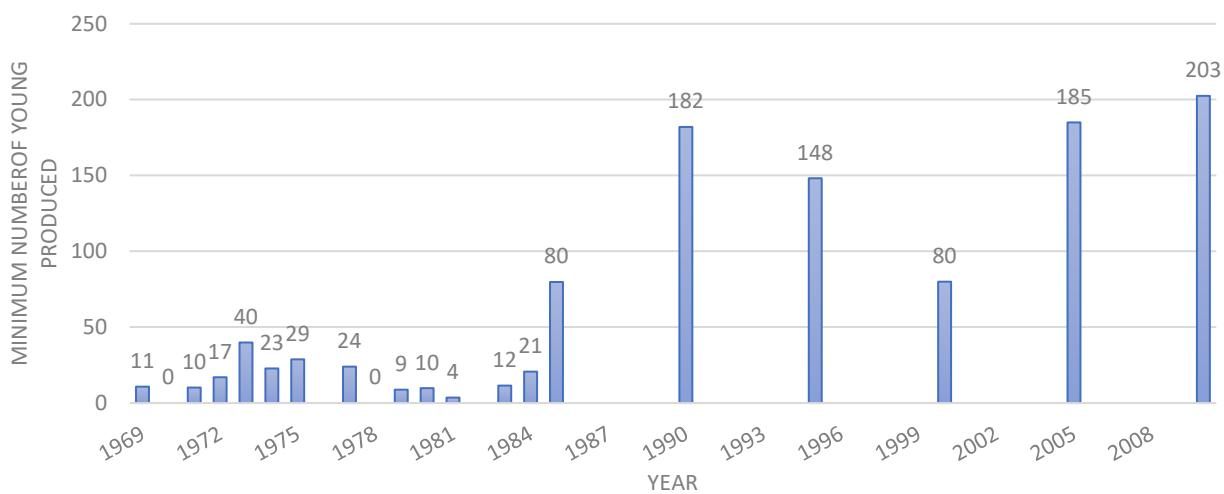


Figure 14. Estimated minimum number of young produced along the Mackenzie River 1969 – 2010. The 1969 data are from Bromley and Matthews (1985) and the remainder from Carrière and Matthews (2013).

The proportion of sites occupied is similar for tundra (74%, n = 1,066) and boreal (70%, n = 2,223) nest sites. However, the correlation coefficient is low (0.23) between those years in which there are both above and below tree line observations. This very tentatively suggests differences between the tundra and boreal ecotypes in environmental effects on breeding success.

Possibility of Rescue

There is always a large number of local, non-territorial (“floater”) birds capable of rapidly occupying any suitable nest sites, as illustrated by removal experiments at Rankin Inlet (Nunavut) (Johnstone 1998). Peregrine Falcons are highly mobile and if populations in Yukon, Nunavut, British Columbia and Alberta remain healthy, any population decline in the NWT population would likely result in rapid recolonization.

THREATS AND LIMITING FACTORS

Peregrine Falcons maintain a low population density, a relatively low reproductive rate and are high trophic-level predators, all of which are characteristics associated with high extinction risk (Brown *et al.* 2007).

Pollutants

Because Peregrine Falcons are predators at the top of the food chain, some chemicals will tend to bioaccumulate to levels causing damaging physiological responses. Data collected in Alberta and Rankin Inlet (Nunavut) indicate the DDE in Peregrine Falcon eggs and blood plasma have declined to levels at which there are no population consequences (see section on *Population Recovery*). However, Falk *et al.* (2018) reported that although Peregrine Falcon egg-shell thickness in Greenland is increasing, it is not back to pre-DDT thicknesses, but this is not enough to cause reproductive failure. They suggest that Peregrine Falcons may still be picking up DDE on the wintering grounds in Latin America.

There are a number of emerging and, as yet, poorly understood threats to Peregrine Falcons from bioaccumulation of chemical contaminants. Barnes *et al.* (2019) monitored mercury concentration in feathers of migrating northern Peregrine Falcons. Mobilization of mercury from thawing permafrost may pose a future risk. Flame retardants, most notably polybrominated diphenyl ether (PBDE) congeners, are increasing in Greenland (Vorkamp *et al.* 2005). PBDE concentrations were found to be lower in Peregrine Falcon nestlings from the eastern Canadian Arctic than in more southerly urban and rural areas (Fernie *et al.* 2017). There appears to be no consensus whether PBDEs have toxic effects on Peregrine Falcons, although thyroid hormone disruption, estrogen effects, and neurotoxicity are mentioned as a potential concern for other species (Wei *et. al* 2021). Perfluoroalkyl substances (PFASs), polychlorinated

napthalenes (PCNs), polychlorinated bipheyls (PCBs) also contributed to the “chemical cocktail” detected in Greenland peregrines (Vorkamp *et al.* 2019), most of which are likely to have been picked up in wintering areas in Latin America. A baseline study in the NWT investigated concentrations of persistent organic pollutants in moose liver between the Dehcho region and the adjacent South Slave region (Larter *et al.* 2017). In general, halogenated contaminants including PFASs were one of the predominant organic contaminants (Larter *et al.* 2017). Polycyclic aromatic hydrocarbons (PAHs) are another chemical contaminant of concern. However, PAHs rapidly metabolize (Seegar *et al.* 2015). Following the April 2010 Deepwater Horizon oil spill in the Gulf of Mexico, migrating Tundra Peregrine Falcons, mostly from northern Canada, were captured on the South Padre Islands (Texas) and found to have elevated blood levels of polycyclic aromatic hydrocarbons (PAHs). The PAHs rapidly metabolized and fell to basal levels in 2011 (Seegar *et al.* 2015).

Decline of Prey Species

Many North American bird populations are declining—in some cases dramatically. Indigenous and community knowledge holders in the Mackenzie Delta have observed declines in shorebirds including: Red-necked Phalarope (*Phalaropus lobatus*), Horned Grebe (*Podiceps auritus*), Hudsonian Godwit (*Limosa haemastica*), Eurasian Whimbrel (Yeezhah, Eehzha) (*Numenius phaeopus*) and Common Snipe (Teekheets’il [dooh]) (*Gallinago gallinago*) (Cooper pers. comm. 2021; Salomons 2002; Mitchell-Firth *et al.* 2003).

Trends in North American bird species are being studied using radar detection of nocturnal migrants. Rosenberg *et al.* (2019) analyzed trend in numbers of 529 North American bird species over 48 years. They found a 29% overall decline in numbers for all species representing a loss of 2.7 – 3.1 billion birds. Abundance of boreal forest birds declined by 33% and Arctic tundra birds by 23%. Continent-wide, shorebirds declined in number by 37% and waterfowl numbers increased by 56%. Drawing on published and unpublished population estimates, Smith *et al.* (2020) concluded that approximately half of North American shorebird species of the Arctic tundra are declining in number while more than half of waterfowl species are increasing. The State of Canadian Birds report indicated that shorebird populations have declined by 40% since 1970, while waterfowl have increased by 50% and forest birds by 7% (NABCI Canada 2019).

Hodson (2018) found that shorebirds, diving ducks and passerines together made up 83% of Peregrine Falcon prey items collected along the Mackenzie River. The three most common species found in Hodson’s (2018) prey samples were Lesser Yellowlegs, Lesser Scaup, and Northern Flicker (Section 1.5.2).

In 2020, COSEWIC assessed the Lesser Yellowlegs as Threatened in Canada based on a -30% decline over three generations (2006-2018) inferred from Breeding Bird Surveys data (COSEWIC

2020, see also NABCI 2019). The NWT portion of the Breeding Bird Surveys (13 routes) show a -25% decline during the same period (2006-2018) (COSEWIC 2020). However, the reliability of the NWT trends is low (95% lower and upper Credible Intervals: -61% to +57%), with about 43% probability that the observed NWT decline rate is steeper than 30% in the last three generations (the rate required to meet the COSEWIC decline criterion for Threatened) (COSEWIC 2020).

For Northern Flickers, the Breeding Bird Surveys data (Smith *et al.* 2020) indicate a stable population in 2009-2019, (NWT routes, n=10, trend +12%, with 40% probability the trend is stable, low reliability). For Lesser Scaup, the aerial waterfowl population surveys conducted by the USFW in Alaska and western Canada, including in the NWT, indicate a long-term decline in population since the 1980s (US Interior 2019).

Although large-scale trends in bird populations are cause for concern, trends or information specific to declining prey populations in the NWT are considered a knowledge gap. The Gwich'in Renewable Resources Board have identified the population status of shorebirds as a research interest (Cooper pers. comm. 2021). Peregrine Falcons are generalist avian predators and if key populations were to decline, Peregrine Falcons might be able to shift their reliance to different species or species groups. To date, the large declines reported in some surveys do not seem to have affected Peregrine Falcon populations in the NWT.

Climate Change

In recent years, increased air temperatures and extreme rainfall events have become more common worldwide and are expected to increase in frequency with climate change (Easterling *et al.* 2000, AMAP 2012; IPCC 2014). In northern Canada, climate change has resulted in a 2.3°C increase in average annual temperature and a 54% and 42% increase in winter and spring precipitation, respectively, between 1948 and 2016 (Zhang *et al.* 2019). These changes are having important implications for northern ecosystems (Singer and Lee 2021).

Permafrost plays an important role in the stability of landscapes (AMAP 2012; Berteaux *et al.* 2017; French 2007;). Peregrine Falcon nest sites located along slopes or cliffs are particularly susceptible to landscape changes (Berteaux *et al.* 2017). Permafrost thaw coupled with increased rainfall events decreases the stability of slopes leading to unstable ground or nest burial (Berteaux *et al.* 2017). Along the Mackenzie River, Carrière and Matthews (2013) reported slumping along the banks, where high water levels or heavy rainfall events washed away nest sites located on unstable slopes. Significant Peregrine Falcon nestling mortality related to heavy rainfall events resulting in nest flooding have also been observed in Rankin Inlet (Nunavut) (Bradley *et al.* 1997, Franke *et al.* 2010, Anctil *et al.* 2014) and in Greenland (Carlzon *et al.* 2018); these observations also extend to other avian species such as the Rough-legged Hawk (Berteaux *et al.* 2017; Fisher *et al.* 2015).

Outbreaks of black flies also indicate signals of climate change related range shifts resulting from increased temperatures and precipitation (Franke *et al.* 2016). Studies have shown that black flies have a negative effect on nestlings and these effects are characterized through increased vascularization, edema, subcutaneous hemorrhage, tissue necrosis, and inflammation (Hunter *et al.* 1997; Franke *et al.* 2016). These negative effects were shown to take place in areas where the distribution of raptors and flies overlapped spatially and temporally, that is, black flies were present and abundant when nestlings hatched (Smith *et al.* 1998; Franke *et al.* 2016). Black fly outbreaks are linked to extreme precipitation events, which increase stream discharge and nutrient runoff resulting in key conditions for black fly larvae growth and survival (Lamarre *et al.* 2018). Increased temperatures and frequency of extreme weather events with climate change could lead to an increase in the frequency of black fly outbreaks, reducing the survival of Peregrine Falcon nestlings (Lamarre *et al.* 2018). See also *Interactions with Parasites and Parasites and Diseases*.

Franke *et al.* (2011) found occurrence of climatic indices related to the North Atlantic Oscillation (NAO)³ during the autumn migration to be correlated with a decrease in adult survivorship of Rankin Inlet (Nunavut) Peregrine Falcons the following autumn. The causal relationships remain uncertain but suggest that Peregrine Falcons are vulnerable to weather-related conditions encountered during fall migration.

Climate change is also causing phenological changes or shifts that influence Peregrine Falcon migration and nesting. Peregrine Falcons undertake long seasonal migrations and raptors with long migrations have been found to advance movement dates the most in the context of climate change (Filippi-Codaccioni *et al.* 2010). Carrière and Matthews (2013) found that Peregrine Falcons along the Mackenzie River advanced their breeding date by 1.5 – 3.6 days per decade from 1985 – 2010, presumably as a result of climate change. These phenological changes (timing of annual cycles) lead to biotic mismatches, which are most prevalent at higher trophic levels (Ockendon *et al.* 2014) particularly in the Arctic (Renner and Zohner 2018). For example, Tulp and Schekkerman (2008) found that peaks in arthropod abundance are occurring earlier in the Arctic. This means that the bird species that Peregrine Falcons prey upon need to also advance their arrival and breeding dates to keep up and match their own prey abundance. Currently, there is no data on how prey species in the NWT are adapting and there are no studies on possible mismatches between timing of Peregrine Falcon nesting and the availability of their prey.

³ North Atlantic Oscillation (NAO) refers to world weather patterns; it is the most prominent and recurrent pattern of atmospheric variability. NAO is used as a global climatic index to integrate information on the effects of climate over several months (Franke *et al.* 2001; Hurrell *et al.* 2001)

As the climate warms, the Arctic tundra is experiencing an increase in shrub cover (see section on *Habitat Trends*). Increased shrub distribution and abundance may alter predator-prey interactions (Mekonnen *et al.* 2021). Peregrine Falcons prefer to hunt in open country and an increase in shrub cover may limit the ability of Peregrine Falcons to access prey. The extent to which this change in habitat structure will affect tundra Peregrine Falcon populations is unknown. In addition, increased shrub cover limits snow compaction and creates a thicker snow layer resulting in lower thermal conductivity, which warms the ground and the underlying permafrost (Berteaux *et al.* 2017).

Climate change is also expected to increase the incidence and size of wildfires in the NWT (e.g., Kochtubadja *et al.* 2006). The direct effects of wildfires on Peregrine Falcons are likely limited to damage to nest sites, nestling mortality and disturbance due to firefighting activities and are generally considered to be minimal (review in Luensmann 2010). Indirect effects of fire on prey abundance are likely to be more important, primarily by maintaining open habitat and affecting local bird populations.

Other Human-related Threats

Historically, Peregrine Falcons were captured on migration by falconers and eggs and chicks were taken from nests. Egg-collecting is now illegal and widely denounced while poaching is considered to be rare (COSEWIC 2017). Captive-bred Peregrine Falcons are legally available to falconers holding a valid permit for CAN \$1,000-\$1,500. This meets much of the demand from the falconry community and takes pressure off wild populations. In 2008, the US allowed an annual capture of 152 wild peregrine nestlings or first-year migratory (passage) birds (US Department of Interior, Fish and Wildlife Service 2008). In 2017, the U.S. Fish and Wildlife Service increased the allowable take to 260 birds based largely on Franke's (2016) population estimate (Section 3.1) (US Department of Interior, Fish and Wildlife Service 2017). Deuterium level analysis indicated that 75% of captures in the US were Peregrine Falcons hatched north of 54° (US Department of Interior, Fish and Wildlife Service 2017), i.e., roughly north of Edmonton. It is not possible to determine the hatch location of the captured birds, but it seems likely that some originate in the NWT.

In the NWT, Peregrine Falcons are defined as wildlife under the *NWT Wildlife Act* and all raptors and their nests and eggs are protected by legislation. A person found to be in illegal possession of such a bird or egg, whether it is alive or dead, is subject to a fine between \$2,000 and \$10,000 and/or up to two years in prison. Capture, possession or handling of Peregrine Falcons for purposes of falconry may be permitted but only with the support of the appropriate wildlife co-management boards and Indigenous government organizations. Any person wanting to capture and possess a Peregrine Falcon must also apply for a License to Capture Wildlife and a Wildlife Handling Permit.

There are a number of large developments in the NWT with potential to affect Peregrine Falcon populations. There are three diamond mines currently operating in the NWT (Diavik, Ekati, Gahcho Kué), one that is non-operational (Snap Lake), one rare earth mine (Thor Lake) that began production in 2021 (Schmidt 2020) and several inactive mines. The NWT has recently proposed a number of ambitious infrastructure projects (Government of the NWT, 2020). The Mackenzie Valley Highway Extension Project, an all-weather road to the Arctic Coast, was first proposed in 1958, but continues to face delays and uncertainties (CBC 2019). Work is currently set to begin on a 321 km segment running from Wrigley to Norman Wells leaving the nearly 500 km section from Norman Wells to Tsiiigehtchic for future phases. Planning is underway for a 413 km road into the Slave Geological Province as far as the Nunavut border. The Taltson Hydroelectric Project is expected to be expanded to provide energy to the Slave Geological Province resource sector and connect to the Canada-wide grid. These projects are all in their initial phases of planning and/or development

Peregrine Falcons are quite variable in their response to human disturbance depending on individual differences, stages in the breeding cycle, and the general level of ambient disturbance (Cade 1960 in White *et al.* 2020). Coulton *et al.* (2013) found no reduction in nest occupancy (Peregrine Falcons and Gyrfalcons combined) related to diamond mines in the Diavik and Ekati mines and weak or no association with hatch success. The Enbridge Norman Wells pipeline had no effect on nest occupancy or reproductive success between 1980 and 1988 (Matthews 1989). Peregrine Falcons often thrive in urban environments subject to significant levels of disturbance (e.g., Gahbauer *et al.* 2015). A study in Great Britain found that peregrines in urban environments were more successful than those in rural environments in terms of number of fledglings and nesting success (Kettel *et al.* 2019). Peregrine Falcons appear to be capable of accepting human disturbance if basic precautions are taken.

Considering the small scale of the projects relative to the size of the NWT, uncertainties in implementation and the apparent resilience of Peregrine Falcons to disturbance, the potential impacts on Peregrine Falcons populations are unlikely to be significant within the near-future if impact assessments are undertaken prior to construction and if best management practices are followed.

The primary threats to raptors living in urban environments are electrocutions and collisions with vehicles and windows (Hager 2009). Considering the low levels of human settlement in the NWT, these mortality sources are not likely to be significant.

Parasites and Diseases

West Nile Virus (WNV) is a mosquito-borne disease most commonly found in corvids (crows, ravens, jays, etc.) although it also infects a wide variety of animals, including humans. It is sometimes fatal to Peregrine Falcons (Chambers and Monath 2003), but they are apparently

less affected than other raptor species (COSEWIC 2017). Mosquito monitoring efforts between 2004 and 2018 indicated presence of *Culex tarsalis*, a new species for the NWT and a known vector for WNV (Stuart 2020). There are no known cases of WNV in NWT birds (Stuart 2020). However, WNV might become a human and avian health issue in the NWT as the climate warms (Reisen *et al.* 2006).

As noted in the section on *Interactions with Parasites*, Peregrine Falcon nestlings have been observed to be parasitized by adult black flies and by blowfly larvae. Black flies have caused significant nestling mortality at Rankin Inlet during wetter years, but this has not been observed in the NWT (Lamarre *et al.* 2018). Anecdotal observations suggest that maggot infestations of nestlings are increasing along the Mackenzie River, but the extent of associated mortality or other health effects remains unclear.

POSITIVE INFLUENCES

Climate Change

Earlier arrival on the breeding grounds, as a result of a warming climate, might be beneficial to Peregrine Falcons since earlier breeding tends to result in higher productivity (review in Morrison *et al.* 2019). Warming temperatures may also allow range expansion. As the climate warms, Peregrine Falcons are moving north in Greenland and may be aggressively displacing Gyrfalcons (*Falco rusticolus*) at nest site locations (Burnham *et al.* 2017). Peregrine Falcons have all the attributes favourable to successful establishment of climate-induced range shifts (large body size, broad latitudinal range, good dispersal ability and diet generalism) (Monaco *et al.* 2020). Increased incidence of wildfire may maintain open habitat which is generally preferred by Peregrine Falcons (review in Luensmann 2010).

Genetic Diversity

The population bottleneck resulting from the DDT-induced decline of North American Peregrine Falcons might be expected to have caused a severe reduction in genetic diversity. However, genetic diversity in Canadian Peregrine Falcons is currently higher than in historical populations, possibly as a result of widespread genetic mixing during captive breeding recovery efforts, despite only pure *anatum* birds being bred and released in Canada (Brown *et al.* 2007). Broad genetic diversity helps a species adapt to a changing environment.

National and International Protection

Peregrine Falcon was previously listed as Threatened in Canada but was down listed to Special Concern under the federal *Species at Risk Act* in 2012. In 2017, COSEWIC re-assessed the Peregrine Falcon *anatum/tundrius* complex as Not at Risk. The Peregrine Falcon is also protected under all provincial and territorial wildlife acts and a number of provincial wildlife

acts protect raptors, nests and eggs, but the details of such protections vary among provinces and territories (COSEWIC 2017). A *Management Plan for the Peregrine Falcon in Canada* was published in 2017. The national management plan proposes a number of conservation measures aimed at reducing threats and evaluating their impacts, including the conservation and, if possible, legal protection of nesting sites. The plan aims to improve knowledge of Peregrine Falcon *anatum/tundrius* populations, with an emphasis on populations located in northern regions, and encourages participation of northern communities in activities related to conservation of the species (Environment and Climate Change Canada 2017).

The Migratory Bird Convention between the US and Canada is implemented in the US by the *Migratory Birds Treaty Act of 1918*, which offers Peregrine Falcons protection in the US (US Fish and Wildlife Service), but not in Canada. However, Peregrine Falcons are protected in Canada under the *Wild Animal and Plant Protection and Regulation of International and Interprovincial Trade Act* (WAPPRIITA) which limits trade and export of the species listed by the Convention on International Trade in Endangered Species (CITES) (Government of Canada 2018). Peregrine Falcons are on CITES Appendix I (CITES 2020) which prohibits all international commercial trade in the species, except in exceptional circumstances.

Habitat Protection

Many protected areas in the NWT have documented Peregrine Falcon breeding territories (not necessarily nests) within their boundaries (Figure 15). Of 647 known nests of Arctic-nesting Peregrine Falcons in the Northwest Territories, 36% are within protected areas (ENR unpubl. data 2021). Habitat protection in the NWT is also offered through proposed protected areas (Doi T'oh Territorial Park and Canol Heritage Trail, Ka'a'gee Tu, Sambaa K'e, Edéhzhíe (ECCC 2020) that overlap with the breeding range of Peregrine Falcon.

Established and Proposed Conservation Network in the Northwest Territories

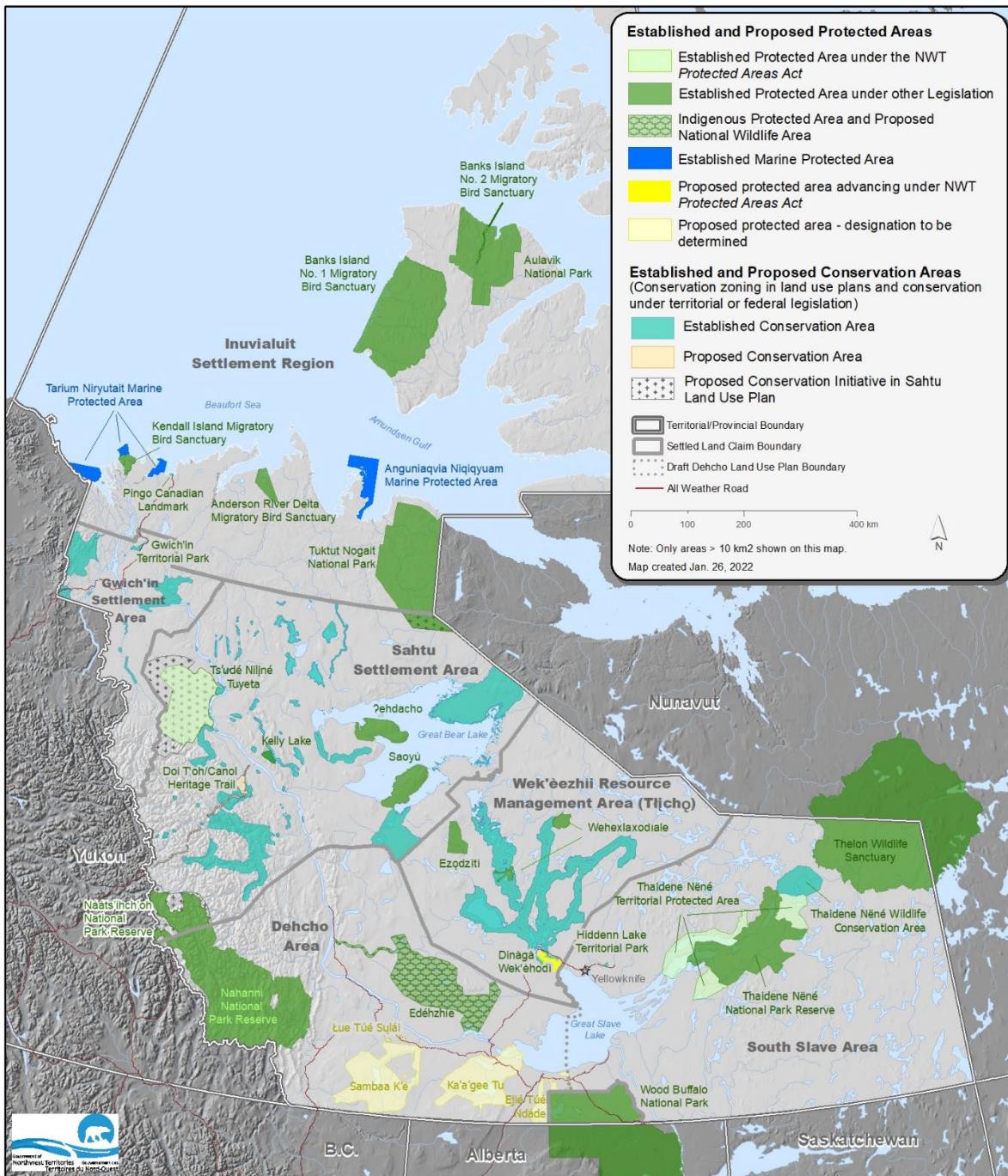


Figure 15. Established and Proposed Conservation Network in the Northwest Territories as of January 2022, including Established and Candidate Protected Areas under the Protected Areas Act (ENR 2022).

ACKNOWLEDGEMENTS

The Species at Risk Committee thanks Chris Shank for his work preparing the drafts of this status report. This report benefitted from comments received during the review process and we thank all of those who contributed their views to the content and structure of this report.

Figures and geospatial data were provided by Gordon Court (Government of Alberta), Francois Shaffer (Environment and Climate Change Canada), and Birdlife International. Gordon Court provided his excellent photographs of the Peregrine Falcon (cover photo and Figure 3).

Coordinates for NWT Peregrine Falcon nests were provided with permission from the Government of the Northwest Territories, Department of Environment and Natural Resources.

The preparer would like to acknowledge sources and contributors including staff of the Government of the Northwest Territories, Department of Environment and Natural Resources (Suzanne Carrière, Bonnie Fournier, Rob Gau) and the Species at Risk Secretariat (Claire Singer, Michele Grabke, and Mélanie Routh).

The Species Specialists indicated in the Authorities Contacted section provided helpful comments on various aspects of the draft report.

AUTHORITIES CONTACTED

Territorial Government Contacts

Bonnie Fournier	GIS and Wildlife Data Specialist (retired), Environment and Natural Resources – Headquarters, Yellowknife, NT.
Claire Singer	Species at Risk Implementation Supervisor (former), Environment and Natural Resources – Headquarters, Yellowknife, NT.
Michele Grabke	Species at Risk Implementation Supervisor, Environment and Natural Resources – Headquarters, Yellowknife, NT.
Rob Gau	Manager, Biodiversity Conservation, Environment and Natural Resources – Headquarters, Yellowknife, NT.
Suzanne Carrière	Wildlife Biologist (Biodiversity), Environment and Natural Resources – Headquarters, Yellowknife, NT.

Other Species Experts

Alastair Franke	Adjunct Professor, University of Alberta, Edmonton, AB.
Gordon Court	Provincial Wildlife Status Biologist, Government of Alberta, Edmonton, AB.
Keith Hodson	Researcher, Telkwa, BC.
Kim Poole	Wildlife Biologist, Aurora Wildlife Research, Nelson, BC.
Knud Falk	Researcher, Aarhus University, Aarhus, Denmark.
Myles Lamont	Principal Biologist, TerraFauna Wildlife Consulting, Surrey, BC.
Nikolas Gulotta	University of Alberta, Edmonton, AB.

BIOGRAPHY OF PREPARER

Christopher Shank was the NWT Raptor Biologist from 1986 – 1997. He first visited the North in the early 1970s on long distance ski trips (Ellesmere, Keewatin) and then undertook early studies on muskox/caribou competition on Banks Island. His post-graduate research was on mountain ungulates. He was Chair of COSEWIC from 1992 – 1997. From 1997 – 2006 he was the Provincial Biodiversity Specialist for the Government of Alberta where he helped to design the Alberta Biodiversity Monitoring Institute. Subsequently, he has worked for IUCN in Pakistan and with the United Nations Environment Programme and the Wildlife Conservation Society in Afghanistan.

STATUS AND RANKS

Region	Coarse Filter (Ranks) ¹ To prioritize	Fine Filter (Status) To provide advice	Legal Listings (Status) To protect under species at risk legislation
Global	G4 – Apparently Secure (NatureServe 2016) ¹	Least Concern (IUCN Red List 2020)	
Canada	N3N4B,N2N,N3N4M (NatureServe 2016) ²	Not at Risk (COSEWIC – 2017) ²	Special Concern (<i>Species at Risk Act</i> – 2012) ³
Northwest Territories	Sensitive (NWT General Status Ranking Program 2021), S3B –Vulnerable [breeding] (NatureServe 2016)	To be determined	No Status
Adjacent Jurisdictions			
Alberta	S2S3B – Vulnerable to Imperiled [breeding] (NatureServe 2016)	SNR - Unranked	Threatened (<i>Wildlife Alberta Act</i> - 2020)
British Columbia	S3 – Vulnerable (NatureServe 2016)		
Saskatchewan	S1B,SNRM – Possibly Extirpated [breeding] & Unranked [migrant] (NatureServe 2016)		
Nunavut	S4B – Apparently Secure [breeding] (NatureServe 2016)		
Yukon	S3B – Vulnerable [breeding] (NatureServe 2016)		

¹ All NatureServe codes are as defined in Definitions of NatureServe Conservation Status Ranks: http://help.natureserve.org/biotics/Content/Record_Management/Element_Files/Element_Tracking/ETRACK_Definitions_of_Heritage_Conservation_Status_Ranks.htm#NatureSe 2

² NatureServe Explorer (nd) (last reviewed 2020) gives a global rank of G4, which means the species is apparently secure. In Canada, N3N4B,N2N,N3N4M means the national rank for the breeding portion of the population is vulnerable to apparently secure, the wintering portion is imperiled, and the migratory

portion is vulnerable to apparently secure. In the NWT, the status rank is sensitive, with the equivalent sub-national rank of S3B, or breeding population is vulnerable) (WGGSNS 2016, updated in 2020).

³ Originally, COSEWIC assessed Canadian Peregrine Falcons as three separate subspecies: anatum subspecies (Endangered in April 1978, Threatened in April 1999 and in May 2000); tundrius subspecies (Threatened in April 1978 and Special Concern in April 1992) and pealei subspecies (Special Concern in April 1978, April 1999 and November 2001). In April 2007, the Peregrine Falcon in Canada was assessed as two separate units: pealei subspecies and anatum/tundrius. Peregrine Falcon anatum/tundrius was assessed as Special Concern in April 2007 (Environment Canada 2015). Then in 2017, COSEWIC assessed anatum/tundrius as Not At Risk and pealei as Special Concern (Government of Canada n.d.). However, it has not yet been removed from Schedule 1. In 1994, tundrius Peregrine Falcons were removed from the United States Endangered Species Act and anatum Peregrine Falcons were removed in 1999 (Brown 2007).

CITED SOURCES

Alberta Parks and Environment. 2019. Alberta Peregrine Falcon Recovery Plan. Alberta Species at Risk Recovery Plan No. 42. Edmonton, AB. 28 pp.

Ambrose, S., C. Florian, R. J. Ritchie, D. Payer and R. M. O'Brien. 2016. Recovery of American Peregrine Falcons along the upper Yukon River, Alaska. *Journal of Wildlife Management* 80:609-620.

Anctil, A., A. Franke and J. Béty. 2014. Heavy rainfall increases nestling mortality of an arctic top predator: experimental evidence and long-term trend in Peregrine Falcons. *Oecologia* 174:1033-1043.

Avibase—the World Bird Database. n.d. Peregrine Falcon (North American).

Arctic Monitoring and Assessment Programme (AMAP). 2012. Arctic climate issues 2011: changes in Arctic snow, water, ice and permafrost. SWIPA 2011 overview report. Arctic Monitoring and Assessment Programme (AMAP). <https://oaarchive.arctic-council.org/handle/11374/635> [accessed 2 February 2022]

Barnes, J. G., G. E. Doney, M. A. Yates, W. S. Seegar, and S. L. Gerstenberger. 2019. A broadscale assessment of mercury contamination in Peregrine Falcons across the northern latitudes of North America. *Journal of Raptor Research* 53:1-13.

Beebe, F. L. 1974. Field studies of the Falconiformes of British Columbia. Vultures, eagles, hawks, and Falcons. Occasional Papers of the British Columbia Provincial Museum No. 17. Dept. Recreation and Conservation, Victoria, BC. 163 pp.

Berteaux, D., G. Gauthier, F. Domine, R. A. Ims, S. F. Lamoureux, E. Lévesque and N. Yoccoz. 2017. Effects of changing permafrost and snow conditions on tundra wildlife: critical places and times. *Arctic Science* 3: 65–90 (2017) dx.doi.org/10.1139/as-2016-0023

BirdLife International and Handbook of the Birds of the World. 2019. Bird species distribution maps of the world. Website: <http://datazone.birdlife.org/species/requestdis>

Birdlife International. n.d. Lesser Yellowlegs *Tringa flavipes*, Data Zone. Website: <http://datazone.birdlife.org/species/factsheet/lesser-yellowlegs-tringa-flavipes/details> [accessed February 2021].

Bradley, M., R. Johnstone, G. Court and T. Duncan. 1997. Influence of weather on breeding success of Peregrine Falcons in the Arctic. *The Auk* 786-791.

Bradley, M. and L. W. Oliphant. 1991. The diet of Peregrine Falcons in Rankin Inlet, Northwest Territories: an unusually high proportion of mammalian prey. *The Condor* 93:193-197.

Bromley, R. G. and S. Matthews. 1985. Status of Peregrine Falcons (*Falco peregrinus anatum*) in the Mackenzie River Valley, Northwest Territories, 1969 to 1985. Raptor Research Foundation Conference.

Brown, J. W., P. J. Van Coeverden de Groot, T. P. Birt, G. Seutin, B. P. T. and V. L. Friesen. 2007. Appraisal of the consequences of the DDT-induced bottleneck on the level and geographic distribution of neutral genetic variation in Canadian Peregrine Falcons, *Falco peregrinus*. *Molecular Ecology* 16:327-343.

Bruggeman, J. E., T. Swem, D. E. Andersen, P. L. Kennedy and D. Nigro. 2016. Multi-season occupancy models identify biotic and abiotic factors influencing a recovering Arctic Peregrine Falcon *Falco peregrinus tundrius* population. *Ibis* 158:61-74.

Burnham, K. K., W. A. Burnham, I. Newton, J. A. Johnson and Gosler, G.A. 2012. The history and range expansion of Peregrine Falcons in the Thule Area, Northwest Greenland. *Monographs on Greenland* Vol. 353. Museum Tusculanum Press, Copenhagen, Denmark.

Burnham, K. K., L. B. Burnham and B. W. Konkel. 2017. Status of Peregrine Falcon and Gyrfalcon populations in Northwest Greenland. North Water Polynya Conference 101-103.

Burnham, W., C. Sandfort and J. R. Belthoff. 2003. Peregrine Falcon eggs: Egg size, hatchling sex, and clutch sex ratios. *The Condor* 105:327-335.

Cade, T. J. 1960. Ecology of the Peregrine and Gyrfalcon populations in Alaska. *University of California Publications in Zoology* 63(3):151-290.

Cade, T. J. and W. Burnham. 2003. Return of the Peregrine: A North American saga of tenacity and teamwork. *The Peregrine Fund*, Boise, Idaho.

Cade, T. J. and R. W. Fyfe. 1970. The North American Peregrine Falcon survey, 1970. *Canadian Field Naturalist* 84:231-245.

Carlzon, L., A. Karlsson, K. Falk, A. Liess and S. Møller. 2018. Extreme weather affects Peregrine Falcon (*Falco peregrinus tundrius*) breeding success in South Greenland. *Ornis Hungarica* 26:38-50.

Carrière, S. pers. comm. 2022. Comment on the Species at Risk Committee's final draft status report for peregrine falcon in the NWT. Species at Risk Committee member. February 2022.

Carrière, S., D. Abernethy, M. Bradley, R. G. Bromley, S. B. Matthews, J. Obst and M. Setterington. 2003. Raptor trends in the Northwest Territories and Nunavut: a Peregrine Falcon case study. *Bird Trends* 57-62.

Carrière, S. and S. Matthews. 2013. Peregrine Falcon surveys along the Mackenzie River, Northwest Territories, Canada. Environment and Natural Resources, Government of the NWT, File Report 140, Yellowknife, NT.

CBC. 2019. Mackenzie Valley Highway: A dream that is proving difficult to realize. Website: <https://www.cbc.ca/news/canada/north/mackenzie-valley-highway-update-1.5381846> [accessed February 2021].

Chambers, T.J and T.P. Monath (eds.). 2003. The flaviviruses: detection, diagnosis and vaccine development. Elsevier Academic Press, San Diego, California.

Chowns, T. 2013. Bird ecoregion-based distribution in the Northwest Territories (Unpublished draft version). Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT.

CITES. 2020. Checklist of CITES Species. Website: <http://checklist.cites.org/#/en>.

Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2017. COSEWIC assessment and status report on the Peregrine Falcon *Falco peregrinus* (*pealei* subspecies — *Falco peregrinus pealei*; *anatum/tundrius* — *Falco peregrinus anatum/tundrius*) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, ON. xviii + 108 pp.

COSEWIC. 2020. COSEWIC assessment and status report on the Lesser Yellowlegs *Tringa flavipes* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 64 pp. Available online: <https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry.html>.

Cooper, K. 2021. pers.comm. pers. comm. 2021. Comment on the Species at Risk Committee's draft status report for peregrine falcon in the NWT. Species at Risk Committee member. February 2021.

Coulton, D. W., J. A. Virgl and C. English. 2013. Falcon nest occupancy and hatch success near two diamond mines in the Southern Arctic, Northwest Territories (Utilisation des nids et succès d'éclosion chez les faucons nichant près de deux mines de diamants dans le Bas-Arctique, Territoires-du-Nord-Ouest). Avian Conservation and Ecology 8:14.

Court, G. S., C. G. Gates and D. A. Boag. 1988. Natural history of the Peregrine Falcon in the Keewatin District of the Northwest Territories. Arctic 41:17-30.

Court, G. S., C. C. Gates, D. A. Boag, J. D. MacNeil, D. M. Bradley, A. C. Fesser, J. R. Patterson, G. B. Stenhouse and L. W. Oliphant. 1990. A toxicological assessment of Peregrine Falcons, *Falco peregrinus tundrius*, breeding in the Keewatin District of the Northwest Territories, Canada. Canadian Field-Naturalist 104:255-272.

DeSorbo, C. R., C. Martin, A. Gravel, J. P. Tash, R. Gray, C. Persico, L. Gilpatrick and W. Hanson. 2018. Documenting home range, migration routes and wintering home range of breeding Peregrine Falcons in New Hampshire. Biodiversity Research Institute, Stantec Consulting, Inc., New Hampshire Audubon., Concord, NH. 25 pp.

Dunn, E. H., A. D. Brewer, A. W. Diamond, E. J. Woodsworth and B. T. Collins. 2009. Canadian atlas of bird banding. Volume 3: Raptors and waterbirds, 1921-1995. Environment Canada, Ottawa, ON.

Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl and L. O. Mearns. 2000. Climate extremes: observations, modeling, and impacts. *science* 289:2068-2074.

Enderson, J. H. and G. R. Craig. 1997. Wide ranging by nesting Peregrine Falcons (*Falco peregrinus*) determined by radiotelemetry. *Journal of Raptor Research* 31:333-338.

Environment and Climate Change Canada. 2017. Management Plan for the Peregrine Falcon anatum/tundrius (*Falco peregrinus anatum/tundrius*) in Canada. *Species at Risk Act Management Plan Series*. Environment and Climate Change Canada, Ottawa. iv + 28 pp. Available online: https://wildlife-species.canada.ca/species-risk-registry/virtual_sara/files/plans/Mp-PeregrineAnatumTundrius-v00-2017Oct-Eng.pdf

Environment and Natural Resources (ENR), unpubl. data. 2020. Data provided by the Wildlife Management Information System (WMIS), October 2020. Government of the Northwest Territories, Yellowknife, NT.

ENR. 2022. Map of Established and Proposed Conservation Network in the Northwest Territories. Provided by E. Gah, Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT.

Environment Canada. n.d. Dichlorodiphenyltrichloroethane. Website: <https://www.ec.gc.ca/toxiques-toxics/Default.asp?lang=En&n=98E80CC6-1&xml=13272755-983C-4DF5-8EA2-E734EFC39869> [accessed July 2020].

Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, T. E. Essington, R. D. Holt and J. B. C. Jackson. 2011. Trophic downgrading of planet Earth. *Science* 333:301-306.

Falk, K., S. Møller, F. F. Rigét, P. B. Sørensen and K. Vorkamp. 2018. Raptors are still affected by environmental pollutants: Greenlandic Peregrines will not have normal eggshell thickness until 2034. *Ornis Hungarica* 26:171-176.

Farmer, C. J., D. J. T. Hussell and D. Mizrahi. 2007. Detecting population trends in migratory birds of prey. *The Auk* 124:1047-1062.

Filippi-Codaccioni, O., J.P. Moussus, J.P. Urcun and F. Jiguet. 2010. Advanced departure dates in long-distance migratory raptors. *Journal of Ornithology* 151:687-694.

Fernie, K.J., D. Chabot, L. Champoux, S. Brimble, M. Alaee, S. Marteinson, D. Chen, V. Palace, D. M. Bird and R.J. Letcher. 2017. Spatiotemporal patterns and relationships among the diet,

biochemistry, and exposure to flame retardants in an apex avian predator, the Peregrine Falcon. *Environmental Research* 158: 43-53.

Fisher, R. J., T. I. Wellicome, E. M. Bayne, R. G. Poulin, L. D. Todd and A. T. Ford. 2015. Extreme precipitation reduces reproductive output of an endangered raptor. *Journal of Applied Ecology* 52:1500-1508.

Franke, A. 2016. Population estimates for northern juvenile Peregrine Falcons with implications for harvest levels in North America. *Journal of Fish and Wildlife Management* 7:36-45.

Franke, A., K. Falk, K. Hawkshaw, S. Ambrose, D. L. Anderson, P. J. Bente, T. Booms, K. K. Burnham, S. Carrière, J. Ekenstedt, I. Fufachev, S. A. Ganusevich, K. Johansen, J. A. Johnson, S. Kharitonov, P. Koskimies, O. Kulikova, P. Lindberg, L. B-E., W. G. Mattox, C. L. McIntyre, S. Mechnikova, D. Mossop, S. Møller, Ó. K. Nielsen, T. Ollila, A. Østlyngen, I. Pokrovsky, K. Poole, M. Restani, B. W. Robinson, R. Rosenfield, A. Sokolov, V. Sokolov, T. Swem and K. Vorkamp. 2020. Status and trends of circumpolar Peregrine Falcon and Gyrfalcon populations. *Ambio* 49:762-783.

Franke, A., V. Lamarre, and E. Hedlin. 2016. Rapid nestling mortality in Arctic Peregrine Falcons due to the biting effects of black flies. *Arctic* 69(3):281-285.

Franke, A., M. Setterington, G. Court, and D. Birkholz. 2010. Long-term trends of persistent organochlorine pollutants, occupancy and reproductive success in Peregrine Falcons (*Falco peregrinus tundrius*) breeding near Rankin Inlet, Nunavut, Canada. *Arctic* 442-450.

Franke, A., J. Therrien, S. Descamps and J. Béty. 2011. Climatic conditions during outward migration affect apparent survival of an arctic top predator, the Peregrine Falcon *Falco peregrinus*. *Journal of Avian Biology* 42:544-551.

French, H.M. 2007. The periglacial environment, 3rd ed. Wiley, Chichester, England.

Fuller, M. R., W. S. Seegar and L. S. Schueck. 1998. Routes and travel rates of migrating Peregrine Falcons *Falco peregrinus* and Swainson's Hawks *Buteo swainsoni* in the Western Hemisphere. *Journal of Avian Biology* 433-440.

Fyfe, R. W., S. A. Temple and T. J. Cade. 1976. The 1975 North American Peregrine Falcon survey. *Canadian Field Naturalist* 90:228-273.

Fyfe, R. W. and R. R. Olendorff. 1976. Minimizing the dangers of nesting studies to raptors and other sensitive species. *Canadian Wildlife Service Occasional Paper Number 23*, Canadian Wildlife Service, Western and Northern Region.

Gahbauer, M. A., D. M. Bird, K. E. Clark, T. French, D. W. Brauning and F. A. Mcmorris. 2015. Productivity, mortality, and management of urban peregrine Falcons in northeastern North America. *Journal of Wildlife Management*. 79(1):10-19.

Galipeau, P., A. Franke, M. Leblond and J. Béty. 2019. Multi-scale selection models predict breeding habitat for two Arctic-breeding raptor species. *Arctic Science* 1:17.

Ganusevich, S. A., T. L. Maechtle, W. S. Seegar, M. A. Yates, M. J. McGrady, M. Fuller, L. Schueck, J. Dayton and C. J. Henny. 2004. Autumn migration and wintering areas of Peregrine Falcons *Falco peregrinus* nesting on the Kola Peninsula, northern Russia. *Ibis* 146:291-297.

Global Biodiversity Information Facility (GBIF). n.d. Free and open access to biodiversity data. Website: <http://www.gbif.org> [accessed January 2022].

Glosbe - the multilingual online dictionary. n.d. Latin-English Dictionary.

González-Rubio, S., K. Vike-Jonas, S. V. Gonzalez, A. Ballesteros-Gómez, C. Sonne, R. Dietz, D. Boertmann, Rasmussen, L. M. Veerla and A. G. Asimakopoulos. 2020. Bioaccumulation potential of bisphenols and benzophenone UV filters: A multiresidue approach in raptor tissues. *Science of the Total Environment* 741:140330.

Government of Canada. n.d. Species at Risk Public Registry. Website: <https://species-registry.canada.ca/index-en.html#/species?sortBy=commonNameSort&sortDirection=asc&pageSize=10&keywords=Peregrine> [accessed 2022].

Government of Canada. 2018. About WAPPRIITA: Wild Species Protection and Trade. Website: <https://www.canada.ca/en/environment-climate-change/services/environmental-enforcement/acts-regulations/wild-species-protection.html>.

Government of the NWT (GNWT). 2020. GNWT Infrastructure Plan: Industry Update--December 2020. <https://www.inf.gov.nt.ca/sites/inf/files/resources/industryday2020.pdf> [accessed February 2021].

Hackett, S. J., R. T. Kimball, S. Reddy, R. C. K. Bowie, E. L. Braun, M. J. Braun, J. L. Chojnowski, W. A. Cox, K. L. Han and J. Harshman. 2008. A phylogenomic study of birds reveals their evolutionary history. *Science* 320:1763-1768.

Hager, S. 2009. Human-related threats to urban raptors. *Journal of Raptor Research* 43:210-226.

Harris, J. T. and D. M. Clement. 1975. Greenland peregrines at their eyries: A behavioral study of the peregrine falcon. *Meddelelser om Gronland*. 205(3). Copenhagen: C. A. Reitzel. 28 p.

Hickey, J. J. 1969. Peregrine Falcon populations; their biology and decline. University of Wisconsin, Madison, Wisconsin.

Hodson, K. 2018. Mackenzie River Peregrine Falcon Surveys 1966–2018. *Ornis Hungarica* 26:134-142.

Hoffman, S.W. and J. P. Smith. 2003. Population trends of migratory raptors in western North America, 1977–2001. *The Condor* 105:397-419.

Holroyd, G. 2010. The 2010 survey of Peregrine Falcons and other raptors on the Hornaday River in Tuktut Nogait National Park. Parks Canada, Western Arctic Field Unit, Inuvik, NT.

Holroyd, G. and U. Banasch. 1996. The 1990 Canadian Peregrine Falcon survey. *Journal of Raptor Research* 30:145-156.

Holroyd, G. and U. Banasch. 2012. The 2005 Canadian Peregrine Falcons survey. *Canadian Wildlife Biology & Management* 1:30-46.

Holroyd, G. and J. Frandsen. 2015. The 2015 survey of Peregrine Falcons and other raptors in Tuktut Nogait National Park. Parks Canada, Western Field Unit, Inuvik, NT.

Hunter, D.B., C. Rohner and D.C. Currie. 1997. Mortality in fledgling Great Horned Owls from black fly hematophaga and leucocytozoonosis. *Journal of Wildlife Diseases* 33(3):486-491. <http://dx.doi.org/10.7589/0090-3558-33.3>

Hurrell, J. W., Y. Kushnir and Visbeck, M. 2001. The North Atlantic Oscillation. *Science* 291: 603-605.

Intergovernmental Panel on Climate Change (IPCC). 2014. Climate change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. Website: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf

Integrated Taxonomic Information System (ITIS). n.d. *Falco peregrinus* Tunstall, 1771, ITIS Report Website: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=175604#null.

IUCN. 2019. Guidelines for Using the IUCN Red List Categories and Criteria: Version 14.

IUCN Red List. 2020. Peregrine Falcon. Website: <https://www.iucnredlist.org/search?query=peregrine%20falcon&searchType=species> [accessed October 2020].

Jarvis, E. D., S. Mirarab, A. J. Aberer, B. Li, P. Houde, C. Li, S. Y. W. Ho, B. C. Faircloth, B. Nabholz and J. T. Howard. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. *Science* 346:1320-1331.

Jenkins, A. R. and G. A. Benn. 1998. Home range size and habitat requirements of Peregrine Falcons on the Cape Peninsula. *J. Raptor Res* 32:90-97.

Jenkins, A. R. 2000. Hunting mode and success of African peregrines *Falco peregrinus minor*: does nesting habitat quality affect foraging efficiency? *Ibis*. 142:235-246.

Johnson, J. A., S. L. Talbot, G. K. Sage, K. K. Burnham, J. W. Brown, T. L. Maechtle, W. S. Seegar, M. A. Yates, B. Anderson and D. P. Mindell. 2010. The use of genetics for the management of a recovering population: temporal assessment of migratory Peregrine Falcons in North America. *PLoS One* 5

Johnstone, R. M. 1998. Aspects of the population biology of tundra Peregrine Falcons (*Falco peregrinus tundrius*). PhD dissertation, Department of Veterinary Anatomy, University of Saskatchewan, Saskatoon. SK.

Johnstone, R. M., G. S. Court, A. C. Fesser, D. M. Bradley, L. W. Oliphant, and J. D. MacNeil. 1996. Long-term trends and sources of organochlorine contamination in Canadian tundra Peregrine Falcons, *Falco peregrinus tundrius*. *Environmental Pollution* 93:109-120.

Kettel, E. F., L. K. Gentle, R. W. Yarnell and J. L. Quinn. 2019. Breeding performance of an apex predator, the peregrine falcon, across urban and rural landscapes. *Urban Ecosystems* 22:117-125.

Kochtubajda, M. D. Flannigan, J. R. Gyakum, R. E. Stewart, K. A. Logan and T. V. Nguyen. 2006. Lightning and fires in the Northwest Territories and responses to future climate change. *Arctic* 59(2): 211-221.

Lamarre, V., A. Franke, O. P. Love, P. Legagneux and J. Béty. 2017. Linking pre-laying energy allocation and timing of breeding in a migratory arctic raptor. *Oecologia* 183:653-666.

Lamarre, V., P. Legagneux, A. Franke, N. Casajus, D. C. Currie, D. Berteaux and J. Béty. 2018. Precipitation and ectoparasitism reduce reproductive success in an arctic-nesting top-predator. *Scientific Reports* 8:1-7.

Larter, N.C., D. Muir, X. Wang, D.G. Allaire, A. Kelly and K. Cox. 2017. Persistent organic pollutants in the livers of moose harvested in the southern Northwest Territories, Canada. *Alces*. Vol. 53: 65-83.

Luensmann, Peggy. 2010. *Falco peregrinus*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Website: www.fs.fed.us/database/feis/animals/bird/fape/all.html [accessed February 2021].

Matthews, S. B. 1989. Norman Wells Pipeline Project Raptor Monitoring Program 1980 to 1988. Government of the Northwest Territories, Department of Renewable Resources File Report No. 82, Yellowknife, NT.

McGrady, M. J., T. L. Maechtle, J. J. Vargas, W. S. Seegar and M. C. Porras Peña. 2002. Migration and ranging of Peregrine Falcons wintering on the Gulf of Mexico coast, Tamaulipas, Mexico. *The Condor* 104:39-48.

Mekonnen, Z. A., W. J. Wiley, L. T. Berner, N. J. Bouskill, M. S. Torn, G. Iwahaha, A. L. Breen, I. H. Myers-Smith, M. G. Criado, Y. Liu, E. S. Euskirchen, S. J. Goetz, M. C. Mack and R. F. Grant. 2021. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. *Environ. Res. Lett.* 16 (2021) 053001 <https://doi.org/10.1088/1748-9326/abf28b>

Mitchell-Firth, E., L. Andre, W. Firth, A. Andre and M. Riepl. 2003. Gwichyah ts'at Teet'l'it Gwich'in Gnjik Gwi'dinehtl'ee': Gwich'in Language Dictionary. Fourth Edition. Gwich'in Social and Cultural Institute, Tsiigehtchic, NT.

Monaco, C. J., C. J. A. Bradshaw, D. J. Booth, B. M. Gillanders, D. S. Schoeman and I. Nagelkerken. 2020. Dietary generalism accelerates arrival and persistence of coral-reef fishes in their novel ranges under climate change. *Global Change Biology* 26(10):5564-5573.

Morrison, C. A., J. A. Alves, T. G. Gunnarsson, B. Þórisson and J. A. Gill. 2019. Why do earlier-arriving migratory birds have better breeding success? *Ecology and Evolution* 9:8856-8864.

Murphy, J. E. 1990. The 1985-1986 Canadian Peregrine Falcon, *Falco peregrinus*, survey. *Canadian Field-Naturalist* 104:182-192.

Myers-Smith, I. H., B. C. Forbes and M. Wilmking. 2011. Shrub encroachment in arctic and alpine tundra: dynamics, impacts and research priorities. *Environmental Research Letters* 6:1-15.

North American Bird Conservation Initiative (NABCI). Canada. 2019. State of Canada's Birds 2019 Report – Supplementary Data. Website: <http://nabci.net/resources/state-of-canadas-birds-2019/> [accessed February 2021].

NatureServe Explorer. n.d.a. Peregrine Falcon. Website: <https://explorer.natureserve.org/Search> accessed May 2020].

NatureServe Explorer n.d.b. *Tringa flavipes* – Lesser Yellowlegs. Website: https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.100017/Tringa_flavipes [accessed February 2021].

NWT Species at Risk. n.d. Species at Risk as a Glance: Peregrine Falcon (*Falco peregrinus*). NWT Species at Risk. Website: <https://www.nwtspeciesatrisk.ca/species/peregrine-Falcon-anatumtundrius-complex> [accessed November 2020].

Obst, J. 2003. Tuktut Nogait National Park, NT. *Journal of Raptor Research* 37:106 - 107.

Ockendon, N., D. J. Baker, J. A. Carr, E. C. White, R. E. A. Almond, T. Amano, E. Bertram, R. B. Bradbury, C. Bradley and S. H. M. Butchart. 2014. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. *Global Change Biology* 20:2221-2229.

Peakall, D. B. 1993. DDE-induced eggshell thinning: an environmental detective story. *Environmental Reviews* 1:13-20.

Peck, K., S. Carrière and N. Lecomte. 2012. The Nunavut and Northwest Territories Raptor Database: User's Manual. Department of Environment, Government of Nunavut and Department of Environment and Natural Resources, Government of the Northwest Territories, Igloolik, NU and Yellowknife, NT.

Phillimore, A. B. and I. P. Owens. 2006. Are subspecies useful in evolutionary and conservation biology? *Proceedings of the Royal Society B* 273:1049-1053.

Poole, K. G. and R. G. Bromley. 1988. Interrelationships within a raptor guild in the central Canadian Arctic. *Canadian Journal of Zoology* 66:2275-2282.

Ratcliffe, D. 1967. Decreases in eggshell weight in certain birds of prey. *Nature* 215:208-210.

Reisen, W.K., Y. Fang and V.M. Martinez. 2006. Effects of temperature on the transmission of West Nile Virus by *Culex tarsalis* (Diptera: Culicidae). *Journal of Medical Entomology* 43(2): 309-317.

Renner, S. S. and C. M. Zohner. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. *Annual Review of Ecology, Evolution, and Systematics* 49:165-182

Rosenberg, K. V., A. M. Dokter, P. J. Blancher, J. R. Sauer, A. C. Smith, P. A. Smith, J. C. Stanton, A. Panjabi, L. Helft and M. Parr. 2019. Decline of the North American avifauna. *Science* 366:120-124.

Rowell, P., Holroyd, G.K. and U. Banasch. 2003a. The 2000 Canadian Peregrine Falcon survey. *Journal of Raptor Research*. 37:98-116.

Rowell, P., G. L. Holroyd and U. Banasch. 2003b. Summary of the 2000 Canadian Peregrine Falcon survey. *Bird Trends* 9:52-56.

Salomons, M. 2002. Field Guide to the Birds of the Mackenzie Delta. Aurora Research Institute, Inuvik, NT.

Schmidt, D. 2020. Thor Lake rare earth production to start in 2021. *Mining Magazine*. Website: <https://www.miningmagazine.com/life-cycle-end-of-life-management/news/1391672/thor-lake-rare-earth-production-to-start-2021> [accessed October 2020].

Seegar, W. S., M. A. Yates, G. E. Doney, J. P. Jenny, T. C. M. Seegar, C. Perkins and M. Giovanni. 2015. Migrating Tundra Peregrine Falcons accumulate polycyclic aromatic hydrocarbons along Gulf of Mexico following Deepwater Horizon oil spill. *Ecotoxicology* 24:1102-1111.

Shank, C. 2004. The 1995 Peregrine Falcon survey in the Northwest Territories. Pages 30 - 32 in Banasch, U., and G. L. Holroyd, editors. *The 1995 Peregrine Falcon Survey in Canada*. Canadian Wildlife Service, Edmonton, AB.

Shank, C. C. and K. G. Poole. 2016. Critical breeding periods for raptor species of the Northwest Territories. Government of the Northwest Territories, Department of Environment and Natural Resources Manuscript Report No. 147., Yellowknife, NT. Available online: https://www.enr.gov.nt.ca/sites/enr/files/raptor_species_breeding_periods.pdf

Singer, C. and C. Lee. 2021. NWT Climate Change Vulnerability Assessment Species at Risk. Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT. Manuscript Report No. 297.

Smith, A.C., M-A.R. Hudson, V.I. Aponte and C.M. Francis. 2020. North American Breeding Bird Survey - Canadian Trends Website, Data-version 2019. Environment and Climate Change Canada, Gatineau, Quebec, K1A 0H3 Data available at <https://wildlife-species.canada.ca/breeding-bird-survey-results/> [accessed June 2021].

Smith, P. A., L. McKinnon, H. Meltofte, R. B. Lanctot, A. D. Fox, J. O. Leafloor, M. Soloviev, A. Franke, K. Falk and M. Golovatin. 2020. Status and trends of tundra birds across the circumpolar Arctic. *Ambio* 49:732-748.

Smith, R.N., S.L. Cain, S.H. Anderson, J.R. Dunk and E.S. Williams. 1998. Blackfly-induced mortality of nestling Red-tailed Hawks. *The Auk* 115(2):368 - 37

Sokolov, V., N. Lecomte, A. Sokolov, M. L. Rahman and A. Dixon. 2014. Site fidelity and home range variation during the breeding season of Peregrine Falcons (*Falco peregrinus*) in Yamal, Russia. *Polar Biology* 37:1621-1631.

Species at Risk Committee. 2020. Detailed instructions for preparation of a SARC status report: Scientific knowledge component. Northwest Territories Species at Risk Committee. Yellowknife, NT.

Species at Risk Secretariat. 2012. Species at Risk (NWT) Terminology Translation Workshop: Report and glossary of translations in Inuvialuktun. Northwest Territories Species at Risk Committee. Yellowknife, NT.

Species at Risk Secretariat. 2013. Report of the Sahtú Species at Risk Terminology Workshop. Northwest Territories Species at Risk Committee. Yellowknife, NT.

Stuart, T. 2020. An overview of the West Nile Virus and California serogroup of vector competent mosquito species in the Northwest Territories from 2004-2018. Prepared by TDTs Consulting. Prepared for Environment and Natural Resources, Government of the Northwest Territories. Manuscript Report No. 286, Yellowknife, NT. Available online: https://www.enr.gov.nt.ca/sites/enr/files/resources/an_overview_of_the_west_nile_virus_and_california_serogroup_of_vector_competent_mosquito_species_in_the_northwest_territories_from_2004-2018.pdf

Suh, A., M. Paus, M. Kieffmann, G. Churakov, F. A. Franke, J. Brosius, J. O. Kriegs and J. Schmitz. 2011. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. *Nature Communications* 2:1-7.

Talbot, S. L., G. K. Sage, S. A. Sonsthagen, M. C. Gravley, T. Swem, J. C. Williams, J. L. Longmire, S. Ambrose, M. J. Flamme, S. B. Lewis, L. Phillips, C. Anderson and C. M. White. 2017. Intraspecific evolutionary relationships among Peregrine Falcons in western North American high latitudes. *PLoS One* 12:e0188185.

Tł'chǫ Community Services Agency. 2006. Tł'chǫ Yatiì Multimedia Dictionary. Website: <http://tlicho.ling.uvic.ca/> [accessed January 2021].

Tordoff, H. B. and P. T. Redig. 2001. Role of genetic background in the success of reintroduced Peregrine Falcons. *Conservation Biology* 15:528-532.

Tulp, I. and H. Schekkerman. 2008. Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. *Arctic* 48:60.

UNEP. 2017. Stockholm Convention on Use of Persistent Organic Pollutants (POPs). Website: <http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx> [accessed July 2020].

US Department of Interior, Fish and Wildlife Service. 2008. Take of migrant Peregrine Falcons in the United States for use in falconry. *Federal Register* 73(243) [FWS-R9-MB-2008-NO156; 91200-1231-9BPP].

US Department of Interior, Fish and Wildlife Service. 2017. Migratory birds: take of Peregrine Falcons for use in falconry. *Federal Register* [FWS-HQ-MB-2017-N136; FF09M21200- 178-FXMB1232099BPP0L2].

US Department of Interior, Fish and Wildlife Service. 2019. Waterfowl population status ,2019. Washington, D.C. USA. Website: <https://www.fws.gov/migratorybirds/pdf/surveys-and-data/Population-status/Waterfowl/WaterfowlPopulationStatusReport19.pdf> [accessed June 2021].

United States Fish and Wildlife Service. *Migratory Bird Treaty Act of 1918*. 16 U.S.C. 703-712, MBTA.

USGS. n.d. Peregrine Falcon *Falco peregrinus*: North American Breeding Bird Survey Trend Results. Website: <https://www.mbr-pwrc.usgs.gov/cgi-bin/atlasa15.pl?03560&1&15&csrfmiddlewaretoken=3YKakk7LxT2ki6NSpl4mstudYCqdW02C> [accessed July 2020].

van den Berg, H. 2008. Global status of DDT and its alternatives for use in vector control to prevent disease. *Environmental Health Perspective* 117(11):1656-1663.

Vorkamp, K., K. Falk, S. Møller, R. Bossi, F. F. Rigét and P. B. Sørensen. 2019. Perfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) add to the chemical cocktail in Peregrine Falcon eggs. *Science of the Total Environment* 648:894-901.

Vorkamp, K., M. Thomsen, K. Falk, H. Leslie, S. Møller and P. B. Sørensen. 2005. Temporal development of brominated flame retardants in Peregrine Falcon (*Falco peregrinus*) eggs from South Greenland (1986– 2003). *Environmental Science & Technology* 39:8199-8206.

Wei, J., L. Xiang and Z. Cai. 2021. Emerging environmental pollutants hydroxylated polybrominated diphenyl ethers: From analytical methods to toxicology research. *Mass Spectrometry Reviews* 40(3):255-279.

Wheeler, T. A. and W. Threlfall. 1989. *Synopsis of the parasites of vertebrates of Canada: Ectoparasites of birds*. Alberta Agriculture, Edmonton, AB.

White, C. M., N. J. Clum, T. J. Cade and W. G. Hunt. 2020. Peregrine Falcon (*Falco peregrinus*), version 1.0. editor. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY.

White, C. M., R. Fyfe and D. B. Lemmon. 1990. The 1980 North American Peregrine Falcon, *Falco peregrinus*, survey. *Canadian Field Naturalist* 104:174-181.

White, C. A. and R. W. Nelson. 1991. Hunting range and strategies in a tundra breeding peregrine and gyrfalcon observed from a helicopter. *Journal of Raptor Research* 25(3):49-62.

White, C. M., S. A. Sonsthagen, G. K. Sage, C. Anderson and S. L. Talbot. 2013. Genetic relationships among some subspecies of the Peregrine Falcon (*Falco peregrinus* L.), inferred from mitochondrial DNA control-region sequences. *The Auk* 130:78-87.

Wightman, C. S. and M. R. Fuller. 2006. Influence of habitat heterogeneity on distribution, occupancy patterns, and productivity of breeding Peregrine Falcons in central West Greenland. *The Condor* 108:270-281.

Wong, P. L., C. M. Bartlett, L. N. Measures, M. S. McNeill and R. C. Anderson. 1990. *Synopsis of the parasites of vertebrates of Canada: Nematodes of birds*. Alberta Agriculture, Animal Health Division, Edmonton, AB.

Zhang, X., G. Flato, M. Kirchmeier-Young, L. Vincent, H. Wan, X. Wang, R. Rong, J. Fyfe, G. Li and V.V. Kharin. 2019. Chapter 4: Changes in Temperature and Precipitation across Canada. In

Bush, E. and D.S. Lemmen. (Eds.) Canada's Changing Climate Report. Government of Canada, Ottawa, ON. Pg. 112-193. Available: <https://changingclimate.ca/CCCR2019/chapter/4-0/>

APPENDIX A – ADDITIONAL INFORMATION

Threats Assessment¹

Threats have been classified for Peregrine Falcon as a whole, insofar as those threats may be relevant to the status of the population in the NWT. The threats assessment is based on whether threats are considered to be of concern for the sustainability of the species over approximately the next 10 years.

This threats assessment was completed collaboratively by members of the NWT Species at Risk Committee, at a meeting on June 18, 2021. The threats assessment will be reviewed and revised as required when the status report is reviewed, in 10 years or at the request of a Management Authority or the Conference of Management Authorities. Parameters used to assess threats are listed in Table A1.

Table A1. Parameters used in threats assessment.

Parameter	Description	Categories
LIKELIHOOD		
Timing (i.e., immediacy)	Indicates if the threat is presently happening, expected in the short term (<10 years), expected in the long term (>10 years), or not expected to happen.	Happening now Short-term future Long-term future Not expected
Probability of event within 10 years	Indicates the likelihood of the threat to occur over the next 10 years.	High Medium Low
CAUSAL CERTAINTY		
Certainty	Indicates the confidence that the threat will have an impact on the population.	High Medium Low

¹ This approach to threats assessment represents a modification of the International Union for the Conservation of Nature's (IUCN) traditional threats calculator. It was originally modified for use in the Inuvialuit Settlement Region Polar Bear Joint Management Plan (Joint Secretariat 2017). This modified threats assessment approach was adopted as the standard threats assessment method by the Species at Risk Committee and Conference of Management Authorities in 2019.

MAGNITUDE		
Extent (scope)	Indicates the spatial extent of the threat (based on percentage of population area affected)	Widespread (>50%) Localized (<50%)
Severity of population-level effect	Indicates how severe the impact of the threat would be at a population level if it occurred.	High Medium Low Unknown
Temporality	Indicates the frequency with which the threat occurs.	Seasonal Continuous
Overall level of concern	Indicates the overall threat to the population (considering the above).	High Medium Low

Overall Level of Concern

The overall level of concern for threats to Peregrine Falcon are noted below. Please note that combinations of individual threats could result in cumulative impacts to peregrine in the NWT. Details be found in the *Detailed Threats Assessment*.

Overall level of concern:

- Threat 1 – Bioaccumulation of pollutants and contaminants Low-Medium
- Threat 2 – Population decline of prey species Low-Medium
- Threat 3 – Climate change Low-Medium
- Threat 4 – Parasites and diseases Low
- Threat 5 – Human disturbance Low

Detailed Threats Assessment

Threat #1. Bioaccumulation of pollutants and contaminants	
Specific threat	<p>Dichlorodiphenyldichloroethylene (DDE) in Peregrine Falcon eggs and blood plasma has declined to safe levels in Alberta and Rankin Inlet (Nunavut), while eggshell thickness has increased in Greenland but has not reached normal pre-DDT thickness. Yet, there are several other pollutants and contaminants present in the NWT or elsewhere in the species range that can bioaccumulate to levels causing physiological damage.</p> <p>Flame retardants (i.e., polybrominated diphenyl ether [PBDE] congeners), perfluoroalkyl substances (PFASs), polychlorinated naphthalenes (PCNs), and polychlorinated bipheyls (PCBs) have been detected in Peregrine Falcons in Greenland. These pollutants and contaminants are suspected to have been picked up in wintering areas in Latin America. Of note, PFASs were one of the predominant organic contaminants in a baseline study of mammalian wildlife in the Dehcho. Both the mobilization of mercury (from thawing permafrost) and polycyclic aromatic hydrocarbons (PAHs) may pose a future risk to Peregrine Falcons. However, PAHs are rapidly metabolized and fall back to basal levels within a year after exposure.</p> <p>Bioaccumulation of pollutants and chemical contaminants in Peregrine Falcons is still a poorly understood threat despite recent advances in this research topic.</p>
Stress	PBDE concentrations are lower in Peregrine Falcon nestlings from the eastern Canadian Arctic in comparison to more southerly urban and rural areas. Thyroid hormone disruption, estrogen effects, and neurotoxicity have been mentioned as potential stress for other species, but there is no consensus whether PBDE has toxic effects on Peregrine Falcons.
Extent	Widespread (>50%)
Severity	Unknown (for non-DDE pollutants and contaminants)
Temporality	Continuous
Timing	Happening now
Probability	High
Causal certainty	Low (Information on non-DDEs is considered a knowledge gap)
Overall level of concern	Low-Medium

Threat #2. Population decline of prey species	
Specific threat	<p>Recent estimates suggest that 29% of North American bird populations have declined over the last 48 years. The State of Canadian Birds Report indicates a 40% decline in shorebird populations of the Arctic tundra but a 50% increase in waterfowl populations.</p> <p>Shorebirds, diving ducks, and passerines make up 83% of Peregrine Falcon's diet along the Mackenzie River. Lesser Yellowlegs (<i>Tringa flavipes</i>), Lesser Scaup (<i>Aythya affinis</i>), and Northern Flicker (<i>Colaptes auratus</i>) are the most common prey species. Surveys indicate that Lesser Yellowlegs are declining (-30%), Lesser Scaup are experiencing a long-term decline, and Northern Flickers may be stable.</p>
Stress	<p>Large-scale population declines in boreal forest birds, Arctic tundra birds, and shorebirds across North America may suggest that populations of prey are changing in the NWT. If populations of key prey species (i.e., Lesser Yellowlegs, Lesser Scaup, and Northern Flicker) were to decline further in the NWT, Peregrine Falcons may shift their reliance to different prey species. However, those species may also be in decline.</p>
Extent	Widespread (>50%)
Severity	Unknown (Information on Peregrine Falcon shifting to other prey species is considered a knowledge gap)
Temporality	Continuous
Timing	Happening now
Probability	High
Causal certainty	Low
Overall level of concern	Low-Medium

Threat #3. Climate change	
Specific threat	<p>In recent years, increased air temperatures and extreme rainfall events are becoming more common worldwide and are expected to increase in frequency and severity with climate change. The effects of climate change are likely to negatively influence the reproductive success of Peregrine Falcons. Precipitation and permafrost thaw can cause nest flooding, collapse or abandonment, as well as black fly and/or other pest breakouts resulting in nestling mortality.</p> <p>Climate change may lead to biotic mismatches, which is most prevalent at higher trophic levels and in the Arctic. Adult Peregrine Falcons may also be influenced by</p>

	extreme temperature events (heat stress), declines in access to or availability of prey, and phenological changes (affecting migration timing).
Stress	<p>Heavy rainfall events have resulted in significant nestling mortality of Peregrine Falcons at Rankin Inlet and in Greenland, and have flooded, collapsed or washed away nest sites located on slopes made unstable through permafrost thaw along the Mackenzie River banks.</p> <p>Direct and indirect effects of wildfires on Peregrine Falcons remain largely unknown. However, wildfires could directly damage nest sites, increase nestling mortality, and cause disturbance due to firefighting activities, while indirectly affecting prey abundance.</p> <p>Peregrine Falcons have advanced their breeding dates by 1.5 – 3.6 days/decade from 1985 – 2010 as a result of climate change. There is currently no data suggesting a possible mismatch between the timing of Peregrine Falcon nesting dates and prey availability.</p> <p>Importantly, the negative effects of climate change could be offset by the species favourable attributes to successful establishment (i.e., large body size, broad latitudinal range, good dispersal ability and diet generalism). In fact, a warmer climate in Greenland has allowed Peregrine Falcons to extend their range northwards into gyrfalcon (<i>Falco rusticolos</i>) nest site locations.</p>
Extent	Widespread (>50%)
Severity	Unknown
Temporality	Continuous
Timing	Happening now
Probability	High
Causal certainty	Low
Overall level of concern	Low-Medium

Threat #4. Parasites and diseases	
Specific threat	The presence of <i>Culex tarsalis</i> , a known vector for West Nile Virus (WNV), has been detected in the NWT from mosquito monitoring efforts between 2004 and 2018. There are no cases of WNV in the NWT, but this disease infects a wide variety of birds, including the Peregrine Falcon, although it seems to be less affected than other raptor species. With a projected warmer climate, this disease might cause both human and avian health issues in the NWT.

	Peregrine Falcon nests can be parasitized by adult black flies and blowfly larvae. Anecdotal observations also suggest that maggot infestations of nestlings are increasing along the Mackenzie River.
Stress	The direct and indirect consequences of these parasites and diseases remain unclear for Peregrine Falcons in the NWT. Current information suggests that Peregrine Falcon nestlings in Rankin Inlet parasitized by adult black flies experienced higher nestling mortality during wet years; the latter has yet been observed in the NWT.
Extent	Localized (<50%)
Severity	Unknown
Temporality	Seasonal
Timing	Happening now
Probability	High
Causal certainty	Low
Overall level of concern	Low

Threat #5. Human disturbance	
Specific threat	Large developments in the NWT have the potential to affect Peregrine Falcon populations. Notably, the three operating diamond mines (i.e., Diavik, Ekati, and Gahcho Kué), a rare earth mine (i.e., Thor Lake), the proposed Mackenzie Valley Highway, the proposed highway from the Slave Geological Province to the Nunavut border, and the expansion of the Taltson Hydroelectric Project.
Stress	Both the Diavik and Ekati mines do not reduce nest occupancy for Peregrine Falcons nor significantly reduce hatch success. Also, the Enbridge Norman Wells pipeline does not affect nest occupancy or reproductive success. Note that Peregrine Falcons are known to thrive in urban environments subject to significant levels of disturbance. Impacts of human disturbances on Peregrine Falcon populations are unlikely to be significant in the NWT, particularly if impact assessments are undertaken prior to construction and best management practices are followed.
Extent	Localized (<50%)
Severity	Low

Temporality	Seasonal
Timing	Happening now
Probability	High
Causal certainty	Low
Overall level of concern	Low