

Inuvialuit Settlement Region

Polar Bear

Co-Management Plan

Draft for Public Review

June 3, 2016

REMOVE before finalizing

This Draft management plan was prepared and provided to the polar bear management agencies for the ISR, which includes Wildlife Management Advisory Council (NWT), Wildlife Management Advisory Council (North Slope), Inuvialuit Game Council, Government of Northwest Territories, Government of Yukon, and the Government of Canada for review.

Input is being sought on this draft. It will be used to make revisions and prepare the final version of the management plan. In the final version of the management plan, it is anticipated that each planning partner will add their logo here once this document is finalized and approved.

Once the Plan is complete it is expected that the plan will be accepted, maybe with some amendments, under the *Species at Risk (NWT) Act* and the federal *Species at Risk Act*

Recommended citation:

Joint Secretariat. 2016. Inuvialuit Settlement Region Polar Bear Co-Management Plan. pp. XX

Cover photo: Jodie Pongracz, University of Alberta

1 PREFACE

2 The *Inuvialuit Settlement Region Polar Bear Co-management Plan* is intended to describe the
3 management goal and objectives for polar bears in the entire Inuvialuit Settlement Region (ISR),
4 including NWT and Yukon. This plan was developed to meet the requirements of a management
5 plan under the territorial *Species at Risk (NWT) Act* and the ISR (Yukon and NWT) regional
6 component of the national management plan under the federal *Species at Risk Act* while
7 respecting the co-management process legislated by the Inuvialuit Final Agreement (IFA).
8

9
10 Management authority for polar bears in the ISR is jurisdictionally complex and the plan is
11 intended to facilitate an integrated and common approach by all jurisdictions. To facilitate this
12 process a companion document, *Framework for Action, a companion document to the ISR Polar*
13 *Bear Co-Management Plan* has been developed. This document outlines actions and areas
14 where further work should be directed. The framework is meant to be used by co-management
15 partners to develop an implementation table.
16

17 Implementation of this co-management plan and companion document is subject to budgetary
18 appropriations, priorities, and constraints of the participating management organizations.
19
20
21

22

23 **ACKNOWLEDGMENTS**

24
25 Preparation of this document was funded by GNWT Environment and Natural Resources (ENR),
26 IFA Implementation funds and Species at Risk program funds. The principal compilers of this
27 document were Marsha Branigan, Jodie Pongracz, Joanna Wilson and Lisa Worthington, ENR.
28 Working group members included Larry Carpenter, WMAC (NWT); Jennifer Lam and Steve
29 Baryluk, IGC; Jennifer Smith, Christine Cleghorn and Lindsay Staples, WMAC (NS); Todd
30 Powell and Tom Jung, YG; Peter Hale, EC; and Peter Sinkins, Nelson Perry and Christopher
31 Hunter, Parks Canada.

32
33 The following organizations provided comments that significantly improved the co-management
34 plan:

35
36 Hunters and Trappers Committees of Aklavik, Inuvik, Paulatuk, Sachs Harbour, Tuktoyaktuk,
37 and Ulukhaktok

38 Wildlife Management Advisory Council (NWT)

39 Wildlife Management Advisory Council (North Slope)

40 Inuvialuit Game Council

41 Government of the Northwest Territories

42 Yukon Government

43 Environment Canada

44 Parks Canada

45

46

47

48 **GLOSSARY OF TERMS**

49

50 **Adaptive management:** an approach to environmental management that continually seeks the
51 best way to reach management objectives. This is done through predicting outcomes of potential
52 decisions, monitoring to understand the impacts of actions, and the use of all available
53 information to adjust management objectives as necessary. Adaptive management incorporates
54 learning and collaboration among scientists, managers and other stakeholders. (Source of
55 definition: Polar Bear Range States 2015)

56

57 **Development:** means (a) any commercial or industrial undertaking or venture, including support
58 and transportation facilities related to the extraction of non-renewable resources from the
59 Beaufort Sea, other than commercial wildlife harvesting; or (b) any government project,
60 undertaking or construction whether federal, territorial, provincial, municipal, local or by any
61 Crown agency or corporation, except government projects within the limits of Inuvialuit
62 communities not directly affecting wildlife resources outside those limits and except government
63 wildlife enhancement projects. (Source of definition: Inuvialuit Final Agreement)

64

65 **Exclusive right to harvest** means the sole right to harvest the wildlife referred to in paragraphs
66 12(24)(b) and (c) and 14(6)(b) to (d), to be allocated the Total Allowable Harvest and to permit
67 non-Inuvialuit to harvest any such wildlife. (Source of definition: Inuvialuit Final Agreement)

68

69 **Invasive techniques:** methods of scientific research that entail disturbing polar bears; for
70 example, tranquilizing, handling, tagging and collaring them (Source of definition: SARC 2012;
71 Joint Secretariat 2015).

72

73 **Preferential right to harvest**, with respect to the Inuvialuit, includes the right to harvest wildlife
74 for subsistence usage and to be allocated, subject to conservation, quantities of wildlife sufficient
75 to fulfil Inuvialuit requirements for subsistence usage before there is any allocation for other
76 purposes in areas where the Inuvialuit will have harvesting rights. (Source of definition:
77 Inuvialuit Final Agreement)

78

79 **Quota:** number of animals from the Total Allowable Harvest that a particular group of hunters
80 (e.g. Inuvialuit/non-Inuvialuit, or different communities) can take for a particular purpose
81 (subsistence, recreational, sport and commercial uses). (Source of definition: WMAC (NS)
82 2008). The Inuvialuit Final Agreement sections 12(41) and 14 (36) describe how the quotas are
83 established within the Total Allowable Harvest and how they are allocated.

84

85 **Total Allowable Harvest (TAH):** a limit put on the number of wildlife that may be harvested in
86 a year. If a Total Allowable Harvest has been established for a wildlife population, a quota will
87 be used to distribute the total number of animals that can be harvested. (Source of definition:
88 WMAC (NS) 2008). The Inuvialuit Final Agreement sections 12(41) and 14 (36) describe how
89 the TAH is determined for polar bear. Within their respective jurisdictions, governments shall
90 determine the harvestable quotas for wildlife species based on the principles of conservation and
91 the following procedures: (a) the WMAC (NS) and WMAC (NWT) shall determine the Total
92 Allowable Harvest for game according to conservation criteria and such other factors as it
93 considers appropriate. Each Council shall make its recommendations to the appropriate Minister,

94 who shall, if he differs in opinion with the Council, set forth to the Council his reasons and
95 afford the Council a further consideration of the matter; (b) in determining the Total Allowable
96 Harvest, conservation shall be the only consideration. For greater certainty, where the Inuvialuit
97 have the exclusive right to harvest, they shall be entitled to harvest the Total Allowable Harvest.
98

99 **EXPLANATION OF ABBREVIATIONS:**

100		
101	AB	Arctic Basin subpopulation
102	CAP	Circumpolar Action Plan for polar bear
103	CITES	Convention on International Trade in Endangered Species of Wild Flora and Fauna
104		
105	COSEWIC	Committee on the Status of Endangered Wildlife in Canada
106	DLP	Defense of life and property mortality
107	EIRB	Environmental Impact Review Board
108	EISC	Environmental Impact Screening Committee
109	ENR	Department of Environment and Natural Resources, GNWT
110	GC	Government of Canada
111	GNWT	Government of the Northwest Territories
112	HTC	Hunters and Trappers Committee
113	IFA	Inuvialuit Final Agreement
114	IGC	Inuvialuit Game Council
115	ISR	Inuvialuit Settlement Region
116	ITK	Inuit Tapiriit Kanatami
117	LK	Local knowledge
118	NB	Northern Beaufort Sea subpopulation
119	NWT	Northwest Territories
120	PBAC	Polar Bear Administrative Committee
121	PBHIMS	Polar Bear-Human Information Management System
122	PBTC	Polar Bear Technical Committee
123	POP	Persistent organic pollutant
124	SARA	Federal <i>Species at Risk Act</i>
125	SARC	Northwest Territories Species at Risk Committee
126	SB	Southern Beaufort Sea subpopulation
127	TAH	Total Allowable Harvest
128	TK	Traditional Knowledge
129	US	United States
130	VM	Viscount Melville Sound subpopulation
131	WMAC (NS)	Wildlife Management Advisory Council (North Slope)
132	WMAC (NWT)	Wildlife Management Advisory Council (Northwest Territories)
133	YG	Government of Yukon
134		
135		

136 EXECUTIVE SUMMARY

137

138 Polar bears in Canada were assessed by the Committee on the Status of Endangered Wildlife in
139 Canada (COSEWIC) in 2008 and listed under the federal *Species at Risk Act* as a species of
140 “special concern” in 2011. Polar bears in the NWT were assessed by the Species at Risk
141 Committee (SARC) and listed under the *Species at Risk (NWT) Act* as a species of “special
142 concern” in 2014. The purpose of this co-management plan is to describe and enhance the
143 existing management system in the ISR in order to achieve the management **goal of ensuring**
144 **the long-term persistence of healthy polar bears in the ISR while maintaining traditional**
145 **Inuvialuit use.**

146

147 Management objectives and approaches to achieve objectives are presented in this plan.
148 Recommended management objectives for polar bears in the ISR are:

- 150 1) Collect traditional knowledge, scientific knowledge and monitoring information in a
151 timely manner to inform management decisions
- 152 2) Adaptively co-manage polar bears and their habitat in accordance with the best
153 information available
- 154 3) Encourage wise use of polar bear populations and all polar bear products
- 155 4) Minimize detrimental effects of human activities on polar bears and their habitat
- 156 5) Communicate and share information on polar bears and impacts of climate change on
157 polar bears

158

159 Pivotal to success, the ISR operates under a structured co-management system that uses adaptive
160 management, a legislated harvest management system with conservation as the overriding
161 management principle, and has the intent to communicate, collaborate, and coordinate to achieve
162 objectives. Under the Inuvialuit Final Agreement both science and Inuvialuit traditional
163 knowledge (TK) and local knowledge (LK) are considered when making management decisions.

164

165 Objectives and associated management approaches to achieve the management goal were
166 developed with input from all management partners in the ISR, and the companion document,
167 *Framework for Action, a companion document to the ISR Polar Bear Co-Management Plan* was
168 developed at the same time to facilitate implementation of the plan. The companion document
169 outlines actions and areas where further work should be directed. The framework is meant to be
170 used by co-management partners to develop an implementation table.

171

172 The management agencies in the ISR will report on implementation of the plan after five years.
173 A co-management plan will remain in effect for as long as polar bears are listed as a species at
174 risk under the *Species at Risk (NWT) Act*. The plan will be reviewed and updated in 10 years or
175 at the request of an organization with management authority for polar bears in the ISR.

177

178 **Contents**

179	1. MANAGEMENT PLANNING	8
180	1.1 Purpose of the Plan.....	8
181	1.2 Management Goal	8
182	1.3 Management Objectives.....	8
183	1.4 Management planning process	8
184	2. CO-MANAGEMENT	9
185	2.1 Legislative framework and agreements.....	9
186	2.2 Polar Bear co-management in the Inuvialuit Settlement Region	11
187	2.2.1 Wildlife Management Advisory Councils	13
188	2.2.2 Inuvialuit Game Council.....	13
189	2.2.3 Inuvialuit Hunters and Trappers Committees	13
190	2.2.4 Environmental Impact Screening Committee.....	13
191	2.2.5 Environmental Impact Review Board.....	14
192	2.2.6 Government of Northwest Territories.....	14
193	2.2.7 Government of Yukon	14
194	2.2.8 Government of Canada	14
195	2.2.9 Collaboration/Coordination	15
196	3. SOCIAL PERSPECTIVES	15
197	4. SPECIES INFORMATION	17
198	4.1 Species Status.....	17
199	4.2 Species Description	18
200	4.3 Population and Distribution	18
201	4.4 Habitat and biological needs	21
202	4.5 Limiting Factors	22
203	4.6 Threats	22
204	4.7 Positive influences.....	29
205	4.8 Knowledge Gaps	30
206	5. CURRENT HARVEST MANAGEMENT SYSTEM	30
207	6. MANAGEMENT ACTIONS AND APPROACHES TO ACHIEVE OBJECTIVES ..	31
208	7. MEASURING PROGRESS	38
209	8. NEXT STEPS	46
210	REFERENCES	47
211	Appendix A: Additional Traditional Knowledge about ISR Polar Bear	54
212	Appendix B: Background Information on Subpopulation Status Assessments and History of Harvest Management	56
213		
214	Appendix C: Threats Classification Table by Polar Bear Subpopulation	64
215		
216		
217		

218 1. MANAGEMENT PLANNING

219 1.1 *Purpose of the Plan*

220 The listing of polar bear as a species of special concern under the federal *Species at Risk Act*
221 (2011) and the Northwest Territories' *Species at Risk (NWT) Act* (2014) triggered the need for
222 management plans under both legislative processes.

223
224 To ensure coordinated and consistent planning across the Inuvialuit Settlement Region (ISR)
225 (NWT and Yukon portions), and to avoid duplication of effort, the WMAC (NWT) and WMAC
226 (NS) have developed this joint plan. The co-management plan for polar bears in the ISR is
227 intended to meet the requirements under both NWT and federal legislation for species at risk.
228 No equivalent legislative requirements exist in Yukon. This plan outlines specific regional
229 approaches and serves as the ISR component of the overarching 'umbrella' management plan for
230 Canada.

231
232 The well-developed and effective polar bear co-management regime in place in the ISR today
233 was established pursuant to the 1984 Inuvialuit Final Agreement, Yukon and NWT *Wildlife Acts*,
234 *Canada National Parks Act*, *Species at Risk (NWT) Act*, and federal *SARA*. This co-management
235 plan facilitates coordination and cooperation amongst management partners based on the shared
236 goal, objectives and approaches that it establishes for polar bear management in the ISR. This
237 plan will assist management partners in planning and prioritizing their work in order to manage
238 human impacts on polar bears in the ISR.

239 1.2 *Management Goal*

240 The overall management goal is:

241
242 To ensure the long-term persistence of healthy polar bears in the ISR while maintaining
243 traditional Inuvialuit use.

244 1.3 *Management Objectives*

245 Although climate change is the most important threat facing polar bears and their habitat, and
246 action to reduce greenhouse gas emissions is required for the long-term conservation of polar
247 bears, addressing climate change is beyond the scope of an ISR polar bear co-management plan.
248 Alternatively, actions will be taken to ensure that the impact of climate change on polar bears is
249 highlighted through the appropriate regional, national and international fora, and that effects of
250 climate change on polar bears are monitored and mitigation actions taken where possible.

251
252 This co-management plan recommends the following objectives for the management of the polar
253 bear in the ISR:

254
255 **Objective 1: Collect traditional knowledge, scientific knowledge and monitoring**
256 **information in a timely manner to inform management decisions.**

257 **Objective 2: Adaptively co-manage polar bears and their habitat in accordance with the**
258 **best information available**

259 **Objective 3: Encourage wise use of polar bear populations and all polar bear products**
260 **Objective 4: Minimize detrimental effects of human activities on polar bears and their**
261 **habitat**
262 **Objective 5: Communicate and share information on polar bears and impacts of climate**
263 **change on polar bears**

264 **1.4 Management planning process**

265 This co-management plan was prepared by ENR (GNWT), in collaboration with other planning
266 partners. To facilitate plan development, WMAC (NWT) held public meetings with the Hunters
267 and Trappers Committees (HTCs) in all 6 ISR communities in 2013, 2014, and 2016 to discuss
268 the potential listing of polar bears, the draft management framework, and the draft plan,
269 respectively. The six communities are Aklavik, Inuvik, Tuktoyaktuk, Paulatuk, Sachs Harbour
270 and Ulukhaktok.

271
272 As part of the engagement and consultation process, there were numerous discussions with
273 representatives of Environment and Natural Resources (ENR), Wildlife Management Advisory
274 Council (Northwest Territories) (WMAC (NWT)), Wildlife Management Advisory Council
275 (North Slope) (WMAC (NS)), Inuvialuit Game Council (IGC), Environment Yukon, Parks
276 Canada, and Environment Canada to gather feedback and direction.

277
278 ENR also consulted on the draft management framework with relevant Aboriginal organizations
279 including the IGC, Inuvialuit Regional Corporation, and Nunavut Tunngavik Incorporated with
280 respect to potential infringement of established or asserted Aboriginal or treaty rights.

281
282 Input was also requested from Department of Fisheries and Oceans, North Slope Borough, US
283 Fish and Wildlife Service, Government of Nunavut, and ISR Fisheries Joint Management
284 Committee. Input from all parties, including the general public, was solicited through the posting
285 of the draft plan on the NWT species at risk website for public comment. Feedback received
286 during engagement and consultation was considered when drafting the final plan.

287
288 To facilitate implementation of this plan the companion document, *Framework for Action, a*
289 *companion document to the ISR Polar Bear Co-Management Plan* was developed at the same
290 time. The framework outlines actions and areas where further work should be directed. The
291 framework is meant to be used by co-management partners to develop an implementation table.

292 **2. CO-MANAGEMENT**

293 **2.1 Legislative framework and agreements**

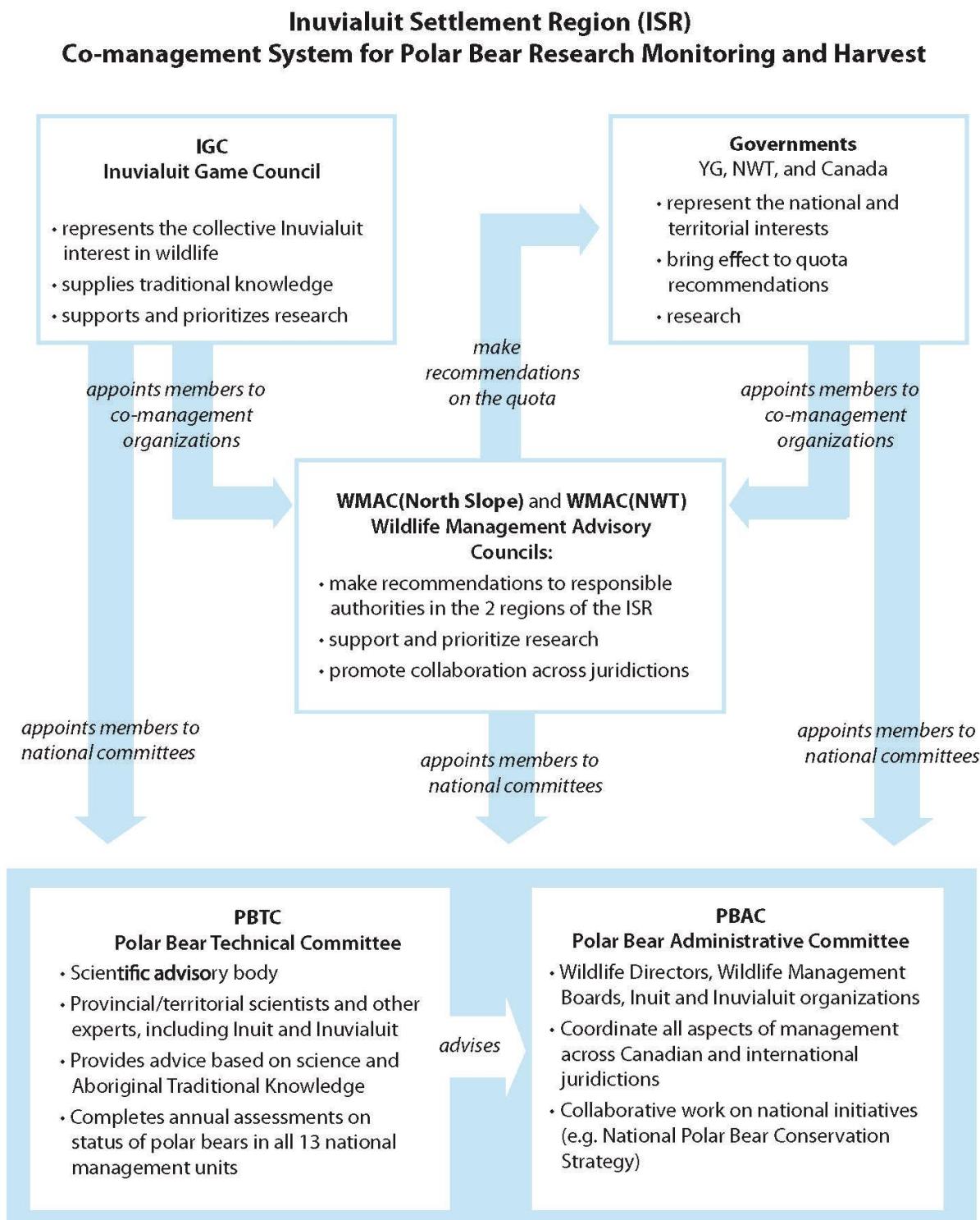
294
295 The comprehensive land claim affecting the Western Arctic Region of the Northwest Territories
296 and the North Slope of Yukon was settled in 1984. The land claim agreement was passed into
297 federal law and is known as the Inuvialuit Final Agreement (IFA). In the Inuvialuit Settlement
298 Region (ISR) of the NWT and Yukon, wildlife is managed in accordance with sections 12, 13,
299 and 14 of the IFA. These sections define the principles of wildlife harvesting and management,
300 identify harvesting rights, and explain the co-management process and conservation principles.

301 They define the structure, roles, and responsibilities of the Wildlife Management Advisory
302 Councils (WMACs) for the North Slope (NS) and Northwest Territories (NWT), governments,
303 the Inuvialuit Game Council (IGC), the Inuvialuit Hunters and Trappers Committees (HTCs), the
304 Environmental Impact Screening Committee (EISC) and the Environmental Impact Review
305 Board (EIRB).
306

307 All polar bear subpopulations in the ISR are shared with other jurisdictions; therefore, it is
308 imperative that management actions are coordinated with applicable jurisdictions. Polar bear
309 subpopulations shared with Alaska (Southern Beaufort Sea) and Nunavut (Northern Beaufort Sea
310 and Viscount Melville Sound) have user-to-user agreements. The *Inuvialuit-Inupiat Polar Bear*
311 *Management Agreement in the Southern Beaufort Sea* was established in 1988 (last revised in
312 2011); and the *Polar Bear Management Agreement for the North Beaufort Sea and Viscount-*
313 *Melville Sound Polar Bear Populations between the Inuit of the Kitikmeot West Region in*
314 *Nunavut and the Inuvialuit* was established in 2006. These agreements facilitate coordinated
315 management of polar bears including managing polar bear harvest on a sustainable yield basis,
316 protecting bears in dens and family groups, and encouraging that the female proportion of the
317 harvest does not exceed one-third of the total harvest. There is also a *2008 Memorandum of*
318 *Understanding between Environment Canada and the United States Department of the Interior*
319 *for the Conservation and Management of Shared Polar Bear Populations.*
320

321 The NWT and Yukon *Wildlife Acts* and associated regulations enable polar bear harvest
322 management provisions to be enforceable in the ISR. The HTC by-law regulations under the
323 NWT *Wildlife Act* identify requirements for use of tags, harvest reporting, and sample
324 submission. The Yukon *Wildlife Act* has a similar ability to establish HTC by-laws. The *Canada*
325 *National Parks Act* applies in National Parks in the ISR.
326

327 In 1973, Canada was a signatory to the international *Agreement on the Conservation of Polar*
328 *Bears*, and Canada's *Letter of Interpretation* upon ratification of the *Agreement*. This agreement
329 requires Canada to "take appropriate action to protect the ecosystems of which polar bears are a
330 part, with special attention to habitat components such as denning and feeding sites and
331 migration patterns, and shall manage polar bear populations in accordance with sound
332 conservation practices based on the best available scientific data". Recently the range states have
333 agreed to also consider TK and LK in conservation and management. In 2015 the Range States
334 developed the Circumpolar Action Plan (CAP) for polar bears. Recognizing that management
335 systems are already in place in each range state, the CAP focuses on issues that are best
336 coordinated at the international level.
337


338 In 2011 polar bears were listed under the federal *Species at Risk Act (SARA)* as a species of
339 special concern. In 2014 polar bears were listed with the same designation under the *Species at*
340 *Risk (NWT) Act*.
341

342 Polar bears are listed under Appendix II of the *Convention on International Trade in Endangered*
343 *Species of Wild Flora and Fauna* (CITES). This means that any international shipment of polar
344 bears or parts thereof requires a permit, and the export must be shown to be non-detrimental to
345 the survival of polar bears.
346

347 Potential impacts of development on polar bears and their habitat are managed through the
348 regulatory system. All developments in the ISR must satisfy the screening and environmental
349 assessment requirements of the IFA, the *Yukon Environmental and Socioeconomic Assessment*
350 *Act*, and the *Canadian Environmental Assessment Act, 2012*.
351

352 **2.2 *Polar Bear co-management in the Inuvialuit Settlement Region***

353 Inuvialuit have exclusive rights to harvest polar bears in the ISR. In implementing the IFA, the
354 Inuvialuit and the governments of Canada, the Northwest Territories and Yukon share
355 management responsibilities in the Inuvialuit Settlement Region for renewable resources,
356 including polar bears. Figure 1 illustrates the co-management system in the ISR as it applies to
357 polar bears. Government and Inuvialuit interests are equally represented on co-management
358 bodies established as a result of the IFA. The management bodies responsible for polar bears are
359 illustrated in Figure 1 and listed below in detail.
360

361 Figure 1. Illustration of co-management processes for polar bear research, monitoring and
362 harvest in the ISR

363

364 **2.2.1 Wildlife Management Advisory Councils**

365 The WMAC (NWT) and WMAC (NS) are the main instruments of wildlife management in the
366 Western Arctic Region of the NWT and the Yukon North Slope respectively. The WMAC
367 (NWT) and the WMAC (NS) advise the federal and territorial governments on wildlife policy,
368 management, regulation, and administration of wildlife, habitat and harvesting in the Inuvialuit
369 Settlement Region (*Inuvialuit Final Agreement*, sections 14 and 12 respectively). The
370 recommendations of these co-management groups provide the foundation for polar bear
371 management in the ISR. These recommendations are based on best available information
372 including TK, LK and science. The WMACs work collaboratively with the IGC, HTCs, and
373 governments in research, monitoring and management of polar bears and their habitat. The
374 WMACs consult regularly with IGC and HTCs, and these groups assist the WMACs in carrying
375 out their functions. The WMACs recommend appropriate quotas for Inuvialuit wildlife
376 harvesting, including Total Allowable Harvest for polar bears. They also provide comments
377 during environmental screening and review processes regarding the monitoring and mitigation of
378 impacts of development on polar bears and their habitat.

379 **2.2.2 Inuvialuit Game Council**

380 The Inuvialuit Game Council (IGC) represents the collective Inuvialuit interest in wildlife and
381 wildlife habitat matters. The IGC appoints members for all joint government/Inuvialuit bodies
382 having an interest in wildlife in the ISR, reviews and advises the government on any proposed
383 Canadian position for international purposes that affects wildlife in the ISR, appoint members
384 whenever possible or appropriate for any Canadian delegation that deals with international
385 matters affecting wildlife harvesting by the Inuvialuit, allocates wildlife quotas among the
386 communities, and assigns community hunting and trapping areas.

387 **2.2.3 Inuvialuit Hunters and Trappers Committees**

388 The local Hunters and Trappers Committees (HTCs) advise the IGC, and WMACs on local
389 wildlife matters, sub-allocate subsistence quotas and other regulated harvesting (tagged species)
390 within the community, and make by-laws governing the exercise of Inuvialuit exclusive and
391 preferential harvesting rights that are made enforceable under territorial and federal legislation.
392 The HTCs work with other organizations in each community to develop Community
393 Conservation Plans, which provide guidance on the conservation and management of natural
394 resources and lands within the ISR.

395 **2.2.4 Environmental Impact Screening Committee**

396 The EISC, together with the EIRB, plays an important role in regulating potential impacts of
397 development on polar bears and their habitat. In accordance with the IFA, any development is
398 subject to review before projects can be approved and permits issued. The EISC conducts
399 environmental screening of development activities proposed for both the onshore and offshore
400 areas of the ISR. The EISC determines if proposed developments could have a significant
401 environmental negative impact on wildlife (including polar bears), wildlife habitat, and on
402 wildlife harvesting. Where the EISC determines that the proposed development could have a

403 significant negative environmental impact, it will be referred and subject to assessment and
404 review by the EIRB.

405 2.2.5 Environmental Impact Review Board

406 The EIRB carries out detailed environmental impact assessments and public reviews of
407 development projects referred to it by the EISC. The EIRB determines whether a project should
408 proceed and, if so, under what specific terms and conditions, and the EIRB makes
409 recommendations to the appropriate federal and territorial ministers.

410 2.2.6 Government of Northwest Territories

411 The Government of the Northwest Territories (GNWT), represented by the Minister of
412 Environment and Natural Resources (ENR), has ultimate responsibility for the conservation and
413 management of polar bears and their habitat in the NWT, in accordance with the Inuvialuit Final
414 Agreement. ENR takes a lead role in polar bear monitoring and in coordinating and enforcing
415 harvest management outlined in the HTC by-laws that are written into regulation under the NWT
416 *Wildlife Act*. It is the Minister of ENR's ultimate responsibility to prepare and complete a
417 management plan for polar bears under the *Species at Risk (NWT) Act*, however, decisions on
418 polar bear listing and management plans under the Act are made jointly with the Wildlife
419 Management Advisory Council (NWT) through the NWT Conference of Management
420 Authorities process (www.nwtspeciesatrisk.ca).

421 2.2.7 Government of Yukon

422 The Government of Yukon, represented by the Environment Yukon, is responsible for the
423 conservation and management of Yukon's polar bears, in accordance with relevant legislation
424 and agreements. Environment Yukon takes the lead role in ensuring management and protection
425 of polar bears and their habitat, and coordinating harvest management within Yukon.
426 Environment Yukon actively engages in multi-jurisdictional species at risk recovery planning
427 efforts to ensure sound management and recovery principles are developed that can be applied
428 within Yukon.

429 2.2.8 Government of Canada

430 Under the federal *Species at Risk Act* (SARA), Environment Canada is responsible for
431 completing a national management plan for polar bears. The Government of Canada (GC) is
432 responsible for managing polar bears and their habitat on federal lands and the offshore
433 environment under the jurisdiction of the federal Minister of Environment and Climate Change
434 (National Wildlife Areas and Migratory Bird Sanctuaries) and Minister responsible for the Parks
435 Canada Agency (National Parks, National Park Reserves and National Historic Sites). The GC
436 contributes to scientific knowledge of polar bears through research and helps to coordinate polar
437 bear management efforts across the country. Canada signs international agreements on behalf of
438 all jurisdictions and has responsibilities to coordinate international management actions for polar
439 bears, with the advice of the co-management boards and jurisdictions. It is therefore involved in
440 international polar bear management forums including the Convention on International Trade in
441 Endangered Species (CITES) and the development of the Circumpolar Action Plan for polar
442 bears through the Range States under the International agreement (1973).

443 **2.2.9 Collaboration/Coordination**

444 Polar bear management organizations coordinate activities through the Polar Bear Administrative
445 Committee (PBAC) and the Polar Bear Technical Committee (PBTC), which comprise
446 aboriginal organizations and governments that have management authority of polar bears in
447 Canada. The PBAC receives technical advice and support from the PBTC, which comprises
448 technical representatives (TK and science). These committees work together to facilitate
449 collaborative research and coordinate conservation initiatives. They provide annual assessments
450 on the status of each of Canada's 13 polar bear subpopulations, and provide advice on matters of
451 national concern regarding the polar bear. In an effort to foster collaboration and understanding
452 the PBAC developed the 2011 *National Polar Bear Conservation Strategy for Canada*.
453

454 Under the auspices of the 1973 *Agreement on the Conservation of polar bears*, the range states
455 signed the 2013 *Declaration of the Responsible Ministers of the Polar Bear Range States*, and
456 completed a *Circumpolar Action Plan* for polar bear in 2015.
457

458 **3. SOCIAL PERSPECTIVES**

459
460 The history of the Inuvialuit and their ancestors in the Beaufort region and Mackenzie Delta is
461 long and complex. It extends far back in time to the arrival of the Thule Inuit, and perhaps even
462 to their predecessors, the Dorset people. Inuvialuit have deep roots in the territory and a resulting
463 vast, accumulated knowledge of its geography, fauna, weather, and ice conditions. This
464 knowledge has made it possible for Inuvialuit to find food, create clothing, and enjoy a vibrant
465 intellectual and emotional life for generations.
466

467 Polar bears and the harvest of them have long been an important part of Inuvialuit culture and
468 economy. Many Inuvialuit stories reinforce the critical importance of polar bears, ice knowledge
469 and safety, and provide guidance in difficult situations. In the days before trade in industrially
470 derived commodities took hold, and when Inuvialuit lived outside of settled communities, polar
471 bear meat was a welcome addition to the family diet. This meat nourished people and their dog
472 teams alike, especially at certain times of the year when other food was in short supply. Polar
473 bear pelts provided clothing, mattresses, and tools. Apart from the bears' economic contribution,
474 they also nourished the Inuvialuit imagination, due in large measure to their strength, agility, and
475 above all, their great intelligence. Polar bears feature prominently in Inuvialuit mythology,
476 spirituality, storytelling, art, song, and other forms of cultural expression and traditions.
477

478 The high cost of living in the western Arctic, including the price of gas, oil, and food, has
479 deterred many younger people from harvesting polar bears to the extent that previous generations
480 did. Despite complicated socio-economic pressures faced by Inuvialuit, contemporary polar bear
481 hunters hope their traditions will be continued by younger people. According to one Paulatuk
482 hunter,
483

484 *...Everybody wants to live in the modern world. But you know, there's things like polar bear
485 hunting that is a part of our life, has been a part of our lives, and will be part of our lives for, I'm
486 hoping, forever and ever. Because it's a part of us, eh?* (Joint Secretariat 2015 pp.202)
487

488 Polar bears remain at the pinnacle of Inuvialuit cultural significance and conservation efforts.
489 Formal collaborations have been developed and implemented with neighbouring Inuit groups
490 that share access and management responsibilities for the respective subpopulations. Additional
491 traditional knowledge about ISR polar bears can be found in Appendix A.
492
493

494
495 Figure 2. An Inuvialuit hunter observes a polar bear on land. Photo R. Hamburg © GNWT.
496
497
498
499
500

501 4. SPECIES INFORMATION

502 4.1 Species Status

503 **Common Names:** Polar bear (English), Nanuq (Inuvialuktun), Ours polaire (French)

504 **Scientific Name:** *Ursus maritimus*

505 **Occurrence:** Polar bears are distributed throughout the circumpolar Arctic where there is annual
506 and multi-year sea ice. In the ISR, polar bears are typically found on sea ice. Seasonally, they
507 may be found along the coastline of the mainland and the Arctic Islands and occasionally inland.

509 Table 1. Summary of status designations in the ISR and Canada

510

	Status Assessment ¹	Legal Listing ²
NWT	Special Concern (2012) ³	Special Concern (2014)
Yukon ⁴	N/A	N/A
Canada	Special Concern (2008) ⁵	Special Concern (2011)

511

512 ¹Status assessments are independent biological assessments. Status in the NWT is assessed
513 by SARC; status in Canada is assessed by COSEWIC.

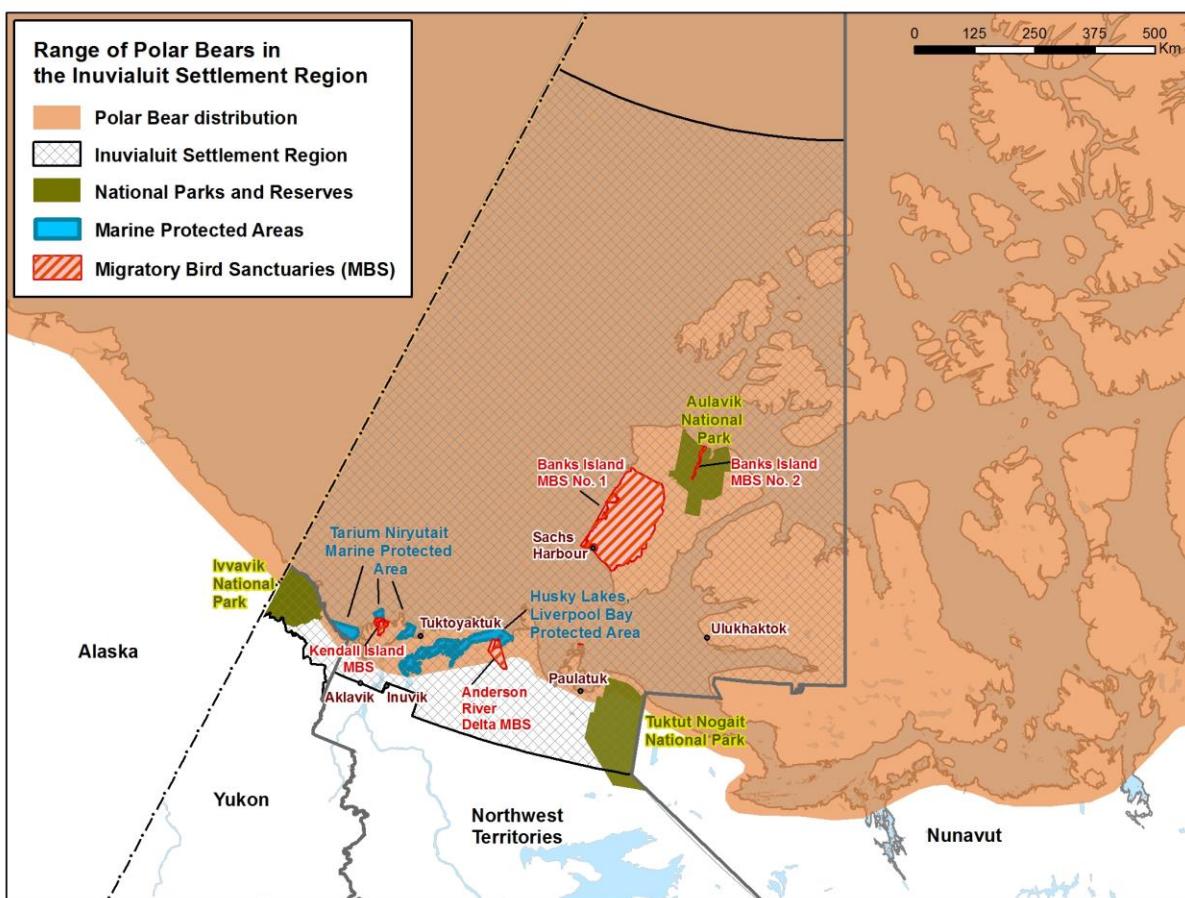
514 ²This is the legal status of the species on the NWT List of Species at Risk under the territorial
515 *Species at Risk (NWT) Act* and on Schedule 1 of the national *Species at Risk Act*.

516 ³Information on the *Species at Risk (NWT) Act* and the SARC assessment is available at
517 www.nwtspeciesatrisk.ca.

518 ⁴Currently there is no Species at Risk legislation in place in Yukon.

519 ⁵Information on the federal *Species at Risk Act* and the COSEWIC assessment is available at
520 www.sararegistry.gc.ca.

521

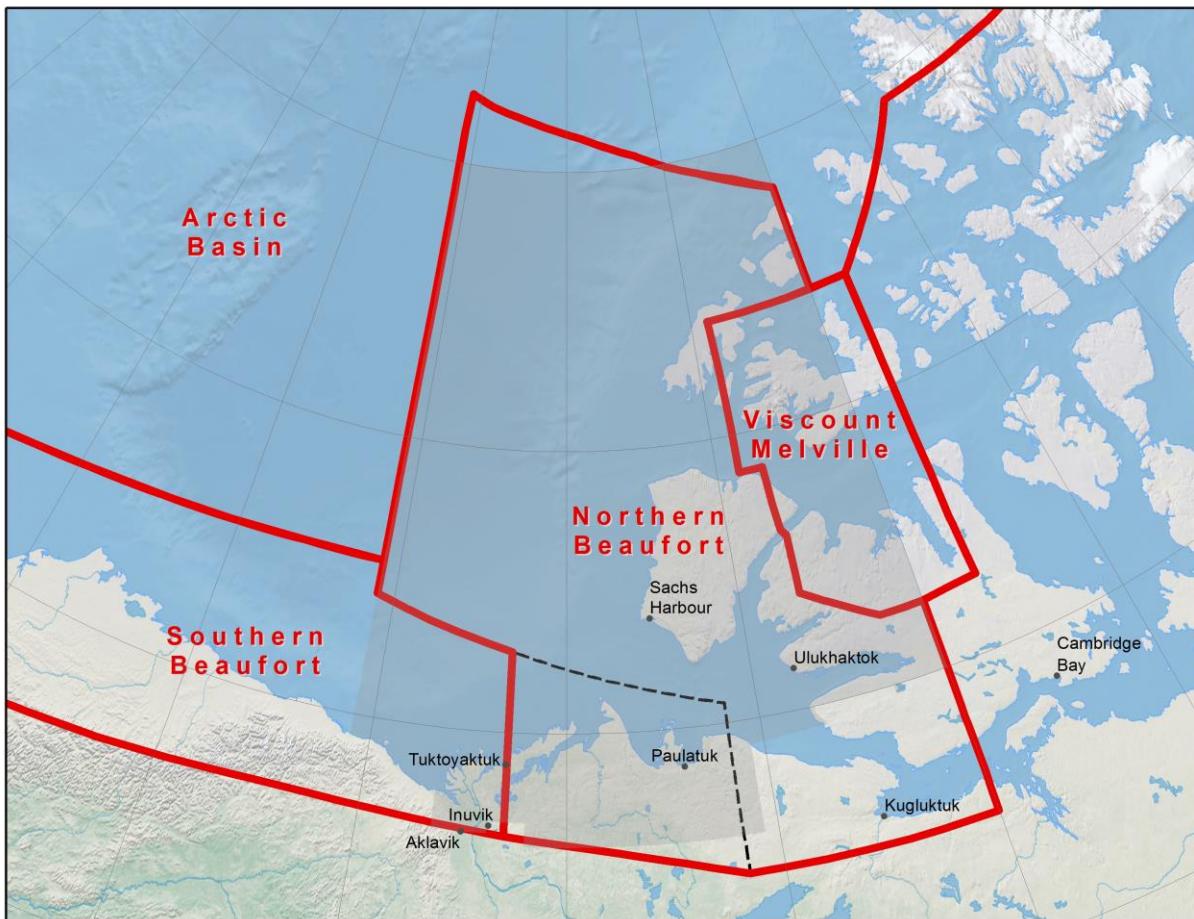

522 Figure 3. A polar bear (Nanuq). Photo J. Lee © GNWT.

523 4.2 Species Description

524 Polar bears are a long lived species that have late sexual maturation and low reproductive rates.
525 They have morphological and physical adaptations to thrive in the Arctic environment and are
526 dependent on the sea ice platform for various aspects of their life history including hunting,
527 movement, mating, and denning. Polar bears are at the top of the Arctic food chain with their
528 primary prey being ringed seals and, to a lesser extent, bearded seals.
529

530 4.3 Population and Distribution

531 Within the ISR polar bears inhabit areas with sea ice and adjacent coastal areas in certain seasons
532 (Figure 4). Their location is typically dependent on sea ice conditions and availability of prey.
533 Polar bears cover large ranges and are constantly moving to find ideal ice conditions and an
534 abundance of seals. The number of bears in each subpopulation can vary over time, and
535 information regarding polar bear abundance and distribution is required for harvest management
536 purposes.
537



539 Figure 4. Range of polar bears in relation to the Inuvialuit Settlement Region
540

542 There are four subpopulations of polar bears in the ISR: Southern Beaufort Sea (SB), Northern
543 Beaufort Sea (NB), Viscount Melville Sound (VM), and Arctic Basin (AB) (Figure 5). These
544 subpopulations are all shared with jurisdictions outside the ISR (Table 2). Subpopulations were
545 delineated using information on polar bear movement patterns and genetics, as well as
546 consideration of management. There is frequent movement of bears between these areas, and
547 both scientists and Inuvialuit believe these subpopulations are not isolated. Many Inuvialuit
548 consider the SB and NB to be a single group of bears that move according to good hunting
549 conditions, however, subpopulations are employed as units to facilitate harvest management.
550

551 The boundary between the NB and SB subpopulations was recently revised (Figure 5) in an
552 attempt to better reflect separation between these subpopulations based on movement analyses
553 (Amstrup et al. 2005). The current east\west boundary is at 133°W. For this change to occur,
554 community consultations and additional analyses (Griswold et al. unpublished paper) were
555 undertaken to inform the final recommendations for the boundary change and subsequent quota
556 changes. The changes were implemented commencing in the 2013/2014 hunting season.
557

558 Polar bear abundance estimates are determined from scientific population mark-recapture
559 studies, aerial surveys, and other techniques as well as traditional knowledge reports and
560 information. Work is ongoing to refine less invasive scientific population abundance estimate
561 methods so that they will be more viable. Techniques are also being revised for the rigorous
562 collection of traditional knowledge information. All information is brought to the PBTC
563 annually and the PBTC determines population estimate and trend for each polar bear
564 subpopulation in Canada.
565
566

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

Figure 5. Subpopulation boundaries for polar bears in the ISR. New subpopulation boundaries as of 2013/2014 are shown as red lines; previous boundaries appear as dashed lines. The ISR is shown in light grey.

587 Table 2: Polar bear subpopulations in the ISR (adapted from 2015 PBTC Status Table). For
 588 underlying details of estimates and trend, see Appendix B and PBTC (2015).
 589

Subpopulation	Population estimate	Estimate used for management	Recent trend	LK and/or TK assessment	Shared with
Southern Beaufort Sea	1,215 ¹	1,215	Likely decline	Stable	Alaska
Northern Beaufort Sea	1,291 ²	1,710 ⁴	Likely stable	Stable	Nunavut
Viscount Melville Sound	161 ³	215 ⁵	Likely stable	Increased	Nunavut
Arctic Basin	Unknown		Unknown	Unknown	All polar bear range states

590
 591

592 ¹Based on the Regehr et al. (2007) estimate (1,526) for the previous subpopulation area adjusted for new boundary
 593 at 133°W following the Griswold et al. unpublished analysis (-311 bears).

594 ²Based on Stirling et al. (2011) estimate (980) for the previous subpopulation area adjusted for the new boundary at
 595 133°W following Griswold et al unpublished analysis (+311 bears).

596 ³Based on Taylor et al. (2002) mark-recapture estimate from 1992

597 ⁴ Though the trend is not significant, Northern Beaufort Sea population estimates appear to be increasing (1972-75:
 598 745 (\pm 246, 95% CI) 1985-1987: 867 (\pm 141, 95% CI) and 2004-2006= 980 (\pm 155, 95% CI) and suggest “the
 599 possibility of some continued population growth” (Stirling et al. (2007)). Stirling et al. (2011) recognize that the
 600 2006 estimate of 980 is likely biased low (possibly related to changes in distribution) and suggest the population
 601 estimates of 1200-1300 in 2004 and 2005 may more accurately reflect the current number of bears in the population.
 602 Stirling et al. (2011) recognize that limited sampling in the northern portion of the study area may have led to
 603 estimates that are biased low. For management purposes, the population estimate for the Northern Beaufort Sea has
 604 historically and continues to be adjusted to reflect negative bias. The current estimate used for management
 605 purposes of the new Northern Beaufort Sea management area is 1,710 (WMAC (NWT) July 2011).

606 ⁵Based on Taylor et al. (2002) population estimate (1999) based on a population viability analysis simulating a 5
 607 year harvest moratorium after 1992 mark-recapture estimate.

608 **4.4 Habitat and biological needs**

609 Polar bears hunt from sea ice to access their primary prey. The condition and extent of sea ice is
 610 a key factor in determining the quality of the habitat. Primary polar bear habitat in the ISR is
 611 found in productive areas with annual sea ice where seals are abundant and accessible. The sea
 612 ice is dynamic, changing in type, thickness and extent through time and space. Since sea ice is
 613 constantly changing, polar bears adapt by moving to where ice conditions are the most
 614 favourable and prey are available. A central finding in the ISR polar bear TK report is that ice
 615 conditions matter and type, thickness, and location will determine where bears are found.

616
 617 Pregnant females enter maternity dens in early winter where they give birth to their cubs. They
 618 nurse their newborn cubs for three to four months before heading back out onto the sea ice.
 619 Maternity denning habitat can be found where snow accumulates on the leeward side of banks
 620 near the coastline, in-land in ravines or depressions, and out on the sea ice. Denning female polar
 621 bears are sensitive and disturbances can lead to den abandonment and impact cub survival.

622 **4.5 Limiting Factors**

623
624 Limiting factors are characteristics of an ecosystem that act to limit the growth, abundance or
625 distribution of an organism. The abundance and availability of prey are important limiting factors
626 for polar bears. These are influenced by sea ice distribution and conditions as well as by
627 population cycles in ringed seals.

628
629 Humans are the primary natural predator of polar bears, however, polar bears have been killed by
630 other polar bears and wolves. Sources of natural mortality include predation by other polar bears,
631 predation by wolves, starvation, drowning, old age, and accidents.

632
633 Polar bears have low reproductive rates, and late sexual maturity. They give birth once every
634 three years to litters that range in size from one to three but are typically only one or two cubs.
635 These factors limit the polar bear's ability to recover from population declines.

637 **4.6 Threats**

638
639 **The primary threat to polar bears is habitat change due to climate warming.** *Projected*
640 *warming over much of their range and the associated reductions in the extent and thickness of*
641 *multi-year sea ice, and the duration and thickness of annual sea ice, will have both direct and*
642 *indirect effects on polar bear. Direct effects include loss of habitat (i.e. extent and composition of*
643 *sea ice), while indirect effects include ecosystem level changes on availability in prey species*
644 *(such as seal), separation from terrestrial denning areas and refugia, contaminant transfer, and*
645 *expansion of human activities. Climate change will be an underlying driver of many of the other*
646 *threats listed below* (National Conservation Strategy 2011: 4) and has potential impacts on
647 natural survival and reproduction.

648
649 Additional threats to polar bears in the ISR include:

- 650 • Oil and gas development – risk of large scale oil spill
- 651 • Increased shipping (could be related to oil and gas development, tourism, or an
652 increase in shipping through the Northwest Passage)
- 653 • Human caused mortality in excess of Total Allowable Harvest (TAH)¹
- 654 • Pollution and contamination
- 655 • Research impacts
- 656 • Disease and parasites
- 657 • Interspecific competition (in terms of food and mates)

658
659 The threats identified are relevant to all subpopulations in the ISR; however their impact may
660 vary between subpopulations. Threats were classified for each subpopulation and the results are
661 summarized in Table 3. The threats classification is presented in detail in Appendix C. The
662 threats classification was completed collaboratively by representatives of ENR, WMAC (NWT),
663 WMAC (NS), IGC, Environment Yukon, Parks Canada, and Environment Canada in November

¹ See glossary

664 2015. Participants brought to the table information gathered by their respective organizations.
 665 The threats classification will be reviewed and revised as required when the management plan is
 666 reviewed, in ten years or at the request of a management partner. Parameters used to classify the
 667 threats are listed in Appendix C.

668
 669 Table 3: Overall level of concern regarding each threat to the sustainability of polar bear
 670 subpopulations, in the next 10 years. See Appendix C for details on how the overall level of
 671 concern was determined.

672

Threat	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
1. Climate change (warming and ice reduction)	High/medium	Low	Low	Low
2. Oil and gas development – risk of large scale oil spill	Low	Low	Low	Low
3. Increased shipping (could be related to oil and gas development, tourism, or related to an increase in shipping through Northwest Passage)	Medium/Low	Low	Low	Low
4. Human caused mortality in excess of TAH	Low	Low	Low	Low
5. Pollution and contamination	Medium	Medium	Medium	Medium
6. Research impacts	Medium\Low	Low	Low	Low
7. Disease and parasites	Medium	Low	Low	Low
8. Interspecific competition (in terms of food and mates)	Low	Low	Low	Low

673

674 Each threat is described briefly below (also see Appendix C). Combinations of individual threats
 675 could result in cumulative impacts to polar bears in the ISR, especially as the habitat changes due
 676 to climate warming.

677

678 Climate Change

679

680 Traditional knowledge from the ISR indicates there have been changing sea ice and weather
 681 conditions, including a delay in freeze-up, advance in break-up, thinning of the sea ice, reduction
 682 of multiyear sea ice, shifts in wind patterns, and movement of floe edges (Joint Secretariat 2015).
 683 Traditional knowledge furthermore acknowledges that “there is no doubt that climate change is
 684 occurring, but they [TK holders] have not yet observed changes in polar bear abundance and
 685 condition” (Joint Secretariat 2015: 196), and most notably, “ice conditions, the effects of climate
 686 change and polar bear behaviour are extremely complex” (Joint Secretariat 2015: 197). “*For the*
 687 *Inuvialuit, the future cannot be predicted; it could be good or bad as far as polar bears are*
 688 *concerned. However, the consensus among the workshop participants [Inuvialuit TK holders]*
 689 *was that polar bears are highly intelligent animals that can adapt to climate change because*
 690 *they have been adapting to many things for thousands of years*” (Joint Secretariat, 2015: 196).
 691 Additional traditional knowledge on polar bears and climate change can be found in Appendix
 692 A.

693
694 Western science predicts that climate change will impact most southern polar bear
695 subpopulations first (Vongraven et al. 2012). Scientific evidence suggests the impact has already
696 been seen on the Alaskan side of the southern Beaufort subpopulation (SB) (Rode et al. 2010).
697 Overall the SB is likely declining (Regehr et al. 2007), a status that has been associated with
698 changing sea ice conditions (Hunter et al. 2010, Regehr et al. 2010). Overall, polar bears in the
699 Chukchi Sea appear to be responding to climate change more favourably than those of the SB
700 (Rode et al. 2014A); and the northern Beaufort subpopulation (NB) appears to have a stable,
701 possibly increasing population (Stirling et al. 2011).
702
703 One primary concern is the loss of annual sea ice which overlays what has been documented as
704 preferred habitat over the continental shelf (Durner et al. 2009). The loss and alteration of
705 habitat has both direct and indirect impacts on polar bears. Indirectly, climate change may
706 impact the ability of polar bears to access prey (changing the distribution and characteristics of
707 the platform from which they primarily hunt). It may also lead to changes in the abundance and
708 distribution of prey species, which may result in a shift in polar bear diets (Thiemann et al. 2008,
709 McKinney et al. 2013). An increase in the spatial and temporal dimensions of the open water
710 season has negative ramifications for travel between pack-ice and land, and could increase long
711 distance swim events which come at a risk (Durner et al. 2011; Pagano et al. 2012). Changing
712 conditions may furthermore lead to increased difficulty in accessing terrestrial denning locations
713 (Derocher et al. 2004). A denning shift landward and eastward and a decline in the proportion of
714 dens on sea ice has already been documented in the SB (Fischbach et al. 2007). There is also a
715 concern that climatic conditions (wave action, erosion, and a lack of snow accumulation due to
716 open water) may alter denning habitat (Joint Secretariat 2015) or render previously important
717 habitats unsuitable.
718
719 Overall as sea ice extent continues to decline, bears in the Beaufort Sea who continue to retreat
720 with pack ice may suffer nutritional consequences (Whiteman et al. 2015). It has also been
721 predicted that as temperatures warm, bears will shift northward to common refuge areas
722 (Derocher et al. 2004) something that may already be occurring, but not confirmed, in the ISR
723 region.
724
725 **Oil and Gas Development – Risk of large scale oil spill**
726
727 While oil and gas exploration has occurred historically in the ISR, there is currently very little oil
728 and gas exploration, partially due to uncertain economic conditions brought on by a drop in oil
729 prices. However, significant discovery licenses² exist in the both the SB and Viscount Melville
730 Sound (VM) polar bear subpopulation areas (AANDC 2015); whereas the majority of

² SIGNIFICANT DISCOVERY LICENCE (SDL): when oil and/or gas is discovered, a company applies to the National Energy Board (NEB) for a significant discovery declaration (SDD) and to Aboriginal Affairs and Northern Development Canada (AANDC) for a significant discovery licence (SDL). However, the significant discovery licence will not be issued until the significant discovery has been declared. This licence covers the area of the discovery and provides indefinite ownership to the discovery. An SDL replaces the exploration licence but gives exactly the same rights (INAC 2007).

731 exploration licences exist within the SB region with the exception of two blocks west of southern
732 Banks Island (AANDC 2015; spatial data available online at
733 <https://www.aadnc-aandc.gc.ca/eng/1100100036298/1100100036301#call>). It is possible that
734 there may be some exploration in the next 10 years (e.g. summer seismic programs) although
735 progression through to production is very unlikely in the next 10 years. There are, however, four
736 sites in production in the near shore area of Alaska (Endicott, Northstar, Oooguruk, Nakaitchuq)
737 (<http://libertyprojectak.com/>). Mechanisms are in place to prevent oil spills, however, they can
738 occur. As an example, hypothetical analysis suggested that the largest spill thought probable
739 from a pipeline break of the Northstar site during September and October would potentially oil
740 0-27 bears and 0-74 bears respectively (Amstrup et al. 2006). Polar bears are known to be
741 attracted to petroleum products and can be impacted through consumption of oiled prey or
742 through self-grooming which are potentially fatal (Ortsland et al. 1981; St. Aubin 1990). The
743 EIS for the Liberty project concluded based on project design the chance of a significant oil spill
744 (large spill > 500 barrels) reaching the water around 1% over the life of the field (US DoI MMS
745 2002). Based on the above information and the low level of oil and gas exploration, during the
746 threat assessment (Appendix C) the probability of a large scale oil spill (Tier 2 or 3 requiring
747 national or international-level response) was judged to be low in the next 10 years for all sub-
748 populations.

749

750 **Increased shipping**

751

752 Sea ice extent is projected to continue declining resulting in a longer and more extensive open
753 water season (Serreze et al. 2007, Jeffries et al. 2013) localized in the southern Beaufort Sea.
754 This may potentially increase opportunity for shipping within the Northwest Passage. Annual
755 commercial use of the Northwest Passage by ships with icebreaking capacity or that are escorted
756 by icebreakers has been a reality since the 1980s. So far, this type of annual commercial use is
757 increasing rapidly. The number of transits through the Northwest Passage increased from 4 per
758 year in the 1980s to 20-30 per year in 2009-2013 (ENR 2015). It is important to realize that sea
759 ice conditions are highly variable (Wilson et al. 2004). It is anticipated that the Northwest
760 Passage will not become a viable trans-Arctic route in the foreseeable future (2020) due to
761 several factors including variability of ice conditions, chokepoints (narrow passages through
762 which shipping must pass), lack of adequate charts, insurance limitations, etc. (Arctic Council
763 2009). However, destination shipping (seasonal resupply activity, mining activity and tourism)
764 will continue to increase partly as a result of expanding resource development and an increase in
765 tourism (Arctic Council 2009). Movement of liquid bulk cargo (e.g. oil) related to resource
766 development is anticipated to be minimal as it is expected that a pipeline would remove the bulk
767 of products from Beaufort Sea (Arctic Council 2009).

768

769 There is a lack of information regarding what potential impacts an increase in shipping would
770 have on polar bears, however, possible impacts include: 1) the alteration of habitat used by polar
771 bears (USFWS 2015) and how this may impact behaviour and movement; 2) the potential for
772 increased exposure to contaminants; and 3) the potential for a bear to be struck by a ship. The
773 potential for a bear to be struck is low because although bears have been documented to make
774 long distance swims between land and pack ice (Durner et al 2011, Pagano et al. 2012), and have
775 been repeatedly observed in open water near the Alaskan shoreline during fall Bowhead whale
776 surveys (Monnet and Gleason 2006), they are not aquatic or semiaquatic. It has been predicted

777 that as shipping traffic increases the likelihood of dumping and accidents in polar bear habitat
778 will increase (Derocher et al. 2004).

779

780 **Human caused mortality in excess of TAH**

781

782 Direct human-caused mortality can also limit polar bear numbers. Within the ISR, harvest is
783 carefully managed. Human-caused mortality including hunting, defense of life and property kills,
784 industry-related mortalities and illegal kills are tracked and counted under a quota. The human
785 caused mortalities have been below the allowable quota for the past 20 years (ENR unpublished
786 data). Furthermore, in recent years, changing sea ice conditions and various other factors have
787 limited hunting in the ISR and resulted in use of only a small portion of the quota (ENR
788 unpublished data). In Alaska, the Southern Beaufort harvest has been under an effective
789 voluntary quota since 1988, and is currently monitored by the North Slope Borough and FWS
790 through a marking, tagging, and reporting program (USFWS 2010). A key aspect that ensures
791 human caused mortality remains below TAH is a highly adaptive management system whereby
792 information related to population abundance and trend is evaluated annually. As long as harvest
793 management continues to be responsive to population changes, and accounts for bear-human
794 conflicts, overhunting will be prevented.

795

796 **Pollution and contamination**

797

798 Polar bears are at the top of the Arctic marine food web and store energy in fats (as do their
799 prey); as a result they are particularly vulnerable to the bioaccumulation of contaminants.
800 Various persistent organic pollutants, heavy metals, and other emerging contaminants have been
801 found in polar bear tissues (for summary review see AMAP 2005, AMAP 2010, AMAP 2011).
802 Contaminant levels in polar bears for some heavy metals (mercury and cadmium) vary regionally
803 (AMAP 2005, 2011).

804

805 The concern is that exposure to contaminants may adversely impact polar bear health. Studies
806 have linked contaminants in polar bear tissue to altered physiological processes of the endocrine,
807 immune and reproductive systems (for review see Sonne 2010).

808

809 Furthermore, the ingestion of anthropogenic debris by animals and birds has potential physical
810 and physiological impacts and may cause lacerations and lesions, blockages, retention in the
811 body for extended periods of time, or be toxic (NOAA 2014). Polar bears are exposed to marine
812 litter and debris, from sources on land as well as garbage disposed at sea by vessels and through
813 fishing activities. If polar bears consume refuse, they may suffer impacts internally along the
814 digestive tract or alternatively become entangled in waste (i.e. become entangled in a fishnet
815 (Alaska Dispatch News 2015)). Polar bear TK holders speak of opening up stomachs and
816 finding plastic. In one situation a TK holder speaks of three starving bears, one of which '*had a*
817 *little piece of green plastic inside his stomach* (Joint Secretariat 2015: 126). A second TK holder
818 notes, "*if you open up the stomach to see what they got.... I've seen bits of those plastic garbage*
819 *bags* (Joint Secretariat 2015: 98).

820

821 **Research impacts**

822

823 Inuvialuit have expressed concern over invasive research techniques including capture,
824 immobilisation and collaring of polar bears. They believe these techniques can cause negative
825 effects on the health and behaviour of bears.
826

827 There is concern that “*bears that have been collared for biological research are more nervous*
828 and “*jumpy*” which affects their ability to hunt” (Joint Secretariat 2015: 180, also noted from 3
829 sources within SARC 2012). Others are concerned that satellite collars can hinder bears’ hunting
830 efforts and possibly lead to cuts, contusions, and infections (S. Wolki in Slavik *et al.* 2009 in
831 SARC 2012). Some harvesters have also seen wounds from tranquilizer darts become infected
832 (G. Wolki in Slavik 2011 in SARC 2012).
833

834 Furthermore, collaring polar bears and using mark-recapture techniques are regarded as
835 disrespectful and unethical, “*I don’t know how effective the tagging process is. Do they have to*
836 *tag? I don’t know.... The way I was growing up, you don’t harass animals; you don’t. You’re*
837 *there to kill it to eat.... You just don’t play with animals, no matter if you’re hunting muskrats or*
838 *you’re hunting polar bear. You don’t harass animals. You don’t harass birds, anything. That’s*
839 *just how we were grown up*” (Joint Secretariat 2015: 279).
840

841 There have been recent scientific publications examining the impact of captures on polar bears
842 (Rode *et al.* 2014b, Thiemann *et al.* 2013). For most bears, activity and movement rates were
843 found to be normal within 5 days of capture (Rode *et al.* 2014b, Thiemann *et al.* 2013).
844 Repeatedly handling bears was not found to have an impact on condition, reproduction or cub
845 growth or survival (Rode *et al.* 2014b). Collaring was also found to have no impact on body
846 condition, reproduction or cub survival (Rode *et al.* 2014b).
847

848 **Disease and parasites**
849

850 Overall polar bears are generally very healthy with few overt signs of disease. Wild polar bears
851 have few documented diseases and parasites. Antibodies from *Toxoplasma gondii* (Jensen *et al.*
852 2010, Elmore *et al.* 2012), canine adenovirus and morbilliviruses (Philippa *et al.* 2004, Kirk *et al.*
853 2010), and *Brucella* (Rah *et al.* 2005, O’Hara *et al.* 2010) have been found. Bears have also been
854 documented to have *Trichinella* sp. (Rodgers and Rodgers 1977, Forbes 2000), and there has
855 been one documented case of rabies in polar bear (Taylor *et al.* 1991). Overall, a literature
856 review of infectious agents identified in wild polar bears had little to no information on
857 associated health effects (Farge *et al.* 2015). Alopecia has also been observed in polar bears with
858 prevalence that varied through time (peaks in 1999 and 2012); the underlying cause for alopecia
859 remains unknown despite examination of infected tissues (Atwood *et al.* 2015).
860

861 There is a concern that an increase in temperatures may speed the development of bacteria and
862 parasites, as well as permit/increase survival in species limited by temperature (Bradley *et al.*
863 2005). An increase in temperatures may also facilitate range expansion in which ‘new’ Arctic
864 species (i.e. ticks, mosquitos, grizzly bears) may bring pathogens to the arctic that were not
865 previously present or prevalent (Bradley *et al.* 2005).
866

867 Traditional knowledge holders have knowledge of sickness in bears. An Ulukhaktok hunter was
868 told by his elders never to eat polar bears whose meat and fat is yellow in colour, “*Only way we*

869 *could find out that bear is sick is after we skin it. See if it's got yellow marks or big boils*
870 *anywhere in the body. If you see that, the elders told me, "Don't even take the bear meat out of*
871 *it. Leave it. Just take the skin." And I believe that. Because if you ever eat that bear meat, you'll*
872 *probably die. Elders are right. They know. I know they're right because they're born with it....*
873 *Yellow meat and fat, right through the meat. Yellow — don't eat it.... In my language, they*
874 *probably say ayuaktuk [abscess]. It means "sick bear." (Joint Secretariat 2015: 126).*
875 Additional TK holders spoke of elders warning not to touch polar bears that had died for no
876 apparent reason: *"But I didn't touch them, because my grandfather had talked to me about [how]*
877 *I shouldn't touch them because they are sick; they have sickness in them. The foxes have been*
878 *eating them, and they spoil them..." (Joint Secretariat 2015: 156) and *"But the animals that die by*
879 *themselves, we're not allowed to touch them...." (Joint Secretariat 2015: 156).**

880

881 Competition (in terms of food and mates)

882

883 In some regions of the Arctic polar bears and grizzly bears overlap in range and may compete for
884 food sources.

885

886 During the open-water season, observations of feeding at a subsistence-harvested bowhead whale
887 bone pile in Alaska indicated that grizzly bears were more socially dominant and displaced polar
888 bears without aggressions. There were only rare observations of polar bear aggression towards
889 grizzly bears (Miller et al. 2015).

890

891 Observations from TK holders tell of grizzly bears and polar bears feeding at sites where
892 bowhead whales that have died from natural causes are beached, *"They are big animals and you*
893 *have grizzlies and polar bears eating together. There is no conflict. There is so much food that*
894 *they're just eating, eating, eating"* (Joint Secretariat 2015: 92).

895

896 Traditional knowledge furthermore indicates a presence of grizzly bears on ice in spring; a TK
897 holder from Tuktoyaktuk never heard from his elders of grizzlies hunting on the sea ice but
898 observed a grizzly bear hunting seal pups out on ice in April sometime around 2001, *"I've seen*
899 *grizzly bears out in the ice hunting seals,"* (Joint Secretariat 2015: 90). A TK holder from
900 Paulatuk mentioned hunters from his community are seeing more grizzly bears on the ice around
901 their region in April and that they are scavenging seals killed by polar bears, *"they're[grizzly*
902 *bears] out on the ice looking for leftover polar bear kills come April. 'Cause the [polar] bears*
903 *they just eat the fat, the oil from the seal* (Joint Secretariat 2015: 91).

904

905 There are also documented accounts of grizzly bears killing polar bears. A hunter from
906 Ulukhaktok said he saw a polar bear mother and cubs killed by a grizzly bear, in the Wynniatt
907 Bay area on the north side of Victoria Island. In the same area, around 1994, hunters from
908 Ulukhaktok found the remains of a polar bear that had just been killed by a grizzly bear. Its back
909 legs had been torn off (Joint Secretariat, 2015).

910

911 Interspecific competition may also occur in mating. There are accounts of polar bears and grizzly
912 bears mating. A TK holder from Paulatuk observed in April grizzlies following polar bear tracks;
913 in March of 1996 he also observed a polar bear and a grizzly bear mating on ice (Joint
914 Secretariat, 2015).

915
916 A hunter from Ulukhaktok also observed a hybrid male bear mating with a female polar bear just
917 south of Banks Island (Joint Secretariat, 2015), making a second sighting in one year. *“The*
918 *female was the polar bear. The male was the big half-breed.... It really was breeding with that*
919 *polar bear. So, we might have another young polar-grizzly out there, hanging around.... [One*
920 *can tell a bear is a hybrid from] the way it looks. It had a big hump on the back and big ears and*
921 *his eyes were different. And also his claws. And also, he was not really white. But he was a big*
922 *one* (Joint Secretariat, 2015: 92-93). The first sighting that year was during Easter when a sport-
923 hunting client of a Sachs Harbour hunter killed a hybrid bear near Nelson head, *“By its*
924 *characteristics, I could tell its mother was a polar bear. The way she acted. It didn’t act like a*
925 *grizzly bear or anything. It acted like a polar bear. Or it learned the ways of the barren land, the*
926 *way that it walked. Where I tracked it for a ways after we got it, its characteristics was polar*
927 *bear. You could see the way it hunts; it’s exactly like a polar bear. It was taught by its mother”*
928 (Joint Secretariat, 2015: 94).

929
930 There have been a total of 8 hybrid bears identified to date (through DNA) to be of grizzly bear-
931 polar bear descent, all of which have occurred within the Banks and Victoria Island area (ENR
932 pers comm.).

933
934 **Other potential threats**
935
936 Potential threats of noises (aircraft, snowmobiles), indirect habitat loss, and denning disturbance
937 due to development are managed through the regulatory system and current best practices
938 guidelines (see section 6, approach 4.3) and are restricted in scope. Therefore, they are not
939 considered to be of concern for the sustainability of polar bear subpopulations, in the next 10
940 years.

941 **4.7 Positive influences**

942
943 Positive influences on polar bears in the ISR are factors likely to promote population growth.
944 These can be classified into two main categories: 1) legislation and management; and 2)
945 environmental changes.

946
947 The existence of a collaborative, coordinated, responsive co-management regime (described in
948 section 2) has and continues to have a positive influence on polar bears in the ISR. This includes
949 a well-established legislated system to manage and monitor harvest that has numerous features
950 that promote polar bear conservation (see section 5). There are also well established
951 mechanisms that facilitate the coordination and collaboration of polar bear management and
952 conservation at various levels, from a local to international level (see Section 2).

953
954 While most environmental changes are anticipated to have a negative effect on polar bears,
955 changes in the ice from multi-year (thick) ice to annual (thinner) ice may lead to an increase in
956 the seal population and create improved hunting conditions for polar bears (Durner et al. 2009;
957 Joint Secretariat 2015). In the short term, this could benefit polar bears particularly in northern
958 parts of the ISR, although these potential benefits may not continue in the long term (e.g. next
959 100 years) (Durner et al. 2009; Stirling et al. 2011). In addition, changing spring sea ice

960 conditions can lead to situations where hunter access to polar bears is limited, thereby easing
961 harvest pressure on polar bears (Reidlenger 2001; W. Gully in Slavik 2011 in SARC 2012).

962 **4.8 Knowledge Gaps**

963
964 The following were identified as key areas where increased information would improve polar
965 bear management in the ISR:

- 966 • Climate-induced changes in the Arctic ecosystem and the impacts these have on polar
967 bears
 - 968 • Shifts in prey abundance, availability and subsequent impact on polar bear diet
 - 969 • Shifts in movements and distribution
 - 970 • Shifts in contaminant levels
- 971 • Ecosystem-level changes (e.g. range expansion of species, shifts in distribution and
972 abundance of species) and the potential impacts on polar bears (e.g. prey, diseases,
973 parasites, etc.)
- 974 • Effectiveness of alternative (less invasive/intensive) monitoring/research techniques for
975 subpopulations in the ISR (e.g. aerial survey, power analysis identifying minimum
976 number of captures required)
- 977 • Baseline contaminant levels related to oil and gas activities
- 978 • Understanding current disease exposure and parasite loads
- 979 • Understanding of sub-lethal impacts of contaminants/pollution and disease/parasites at an
980 individual and population level
- 981 • Amount of shipping that is occurring, including cargo (what they are carrying), routes,
982 and season (are ice-breakers used?), how this might change in the future, and the
983 potential impact on polar bears
- 984 • The relative importance of the different threats to polar bear and how they interact
985 (cumulative effects).

986 **5. CURRENT HARVEST MANAGEMENT SYSTEM**

987 There are well established systems to manage and monitor polar bear harvest in the ISR. Total
988 Allowable Harvest (TAH) levels for polar bears are set in accordance with the mechanisms in
989 IFA and involve community consultations. Harvest levels, along with the most recent
990 information on subpopulations, are reviewed annually by the WMACs, IGC, and commissioners³
991 under the relevant user-to-user agreements. Relevant co-management authorities provide
992 recommendations regarding TAH adjustments as required to achieve management objectives.
993 Depending on the subpopulation, TAH is subject to final acceptance by the territorial and federal
994 ministers as appropriate.

³ Commissioners: The SB subpopulation is shared with Alaska and managed under the 1988 Inuvialuit- Inupiat agreement. The quota is recommended under the principles of this agreement by the designated commissioners of the North Slope Borough and the Inuvialuit Game Council, and technical advisors.

996 The harvest management system is adaptive. If TK, LK or scientific monitoring indicates a
997 subpopulation has declined and the objective is to maintain the population, a potential response
998 could be to reduce the TAH to facilitate growth of the population. This mechanism has been
999 previously employed in the ISR. Historically, in absence of population estimates, quotas were
1000 set too high in the Viscount-Melville Sound area and declines in the number of bears were
1001 reported. Subsequently a VM subpopulation survey (1989-1992) was conducted and based on the
1002 results, a 5 year moratorium on harvest was implemented. After the moratorium, harvest levels
1003 were set with the objective to increase the population; this was done using information from
1004 population viability modelling. These actions were recommended and implemented in the ISR
1005 through the co-management process and applicable legislation (HTC by-laws).
1006
1007 Additional features of the harvest management system provide for conservation of the species.
1008 All human-caused mortality (including kills made in defence of life and property, research
1009 mortalities, and illegal harvests) are counted under the quota. Quotas are set based on a female
1010 harvest that does not exceed 1/3 of the quota. Harvest of a bear in a den, constructing a den, or
1011 accompanied by a cub is prohibited. Hunting seasons were established to allow pregnant
1012 females to establish maternity dens. Inuvialuit are permitted to transfer their exclusive hunting
1013 rights to other guided hunters. When this occurs the tag allocated to the guided hunter cannot be
1014 reallocated if the hunt is unsuccessful.
1015
1016 Under the system, the use of a tag, harvest reporting, and sample collection (including proof of
1017 sex and tooth) are mandatory under the HTC by-laws. This ensures information is available for
1018 management purposes. Additional samples are regularly submitted by harvesters to support
1019 different research projects. Polar bears in the ISR have been managed under quota since the
1020 1960s and there is currently excellent understanding and compliance at a local level. For a
1021 history of harvest management in each subpopulation, see Appendix B.

1022 **6. MANAGEMENT ACTIONS AND APPROACHES TO ACHIEVE 1023 OBJECTIVES**

1024 Polar bear management in the ISR is a success story with a long history. The Inuvialuit people
1025 have informally managed the species for generations and in recent decades have been leaders in
1026 developing landmark agreements like the 1988 Inuvialuit-Inupiat user-to-user agreement.
1027 Government management actions date back to the 1960s. The current co-management regime for
1028 polar bears in the ISR has proven to be successful (further described in section 5).
1029

1030 A large number of actions that support the objectives in this management plan are completed,
1031 ongoing, or underway. These actions are discussed below under each recommended approach to
1032 achieve identified management objectives. Approaches under each objective, their relative
1033 priority and timeframe, and how they will be measured are summarized in Table 4. The
1034 *Framework for Action* will be used to develop an implementation table to identify actions with
1035 leads and timeframes.
1036

1037 **Objective 1: Collect traditional knowledge, scientific knowledge and monitoring
1038 information in a timely manner to inform management decisions**

1039 Science provides knowledge based on population research and monitoring, while TK offers
1040 information acquired over many generations of experience. These sources of information along
1041 with harvest monitoring are essential for effective management. A collaborative approach
1042 between TK holders, academic and government researchers, and harvesters, can provide a more
1043 complete understanding. The knowledge gained through traditional knowledge, science, and
1044 harvest monitoring should be reported to management authorities in a timely manner to inform
1045 management decisions.

1046

**1047 Approach 1.1: Document traditional knowledge and use traditional knowledge to
1048 inform management decisions on an ongoing basis**

1049 The WMACs have recently released their report titled *Inuvialuit and Nanuq: A Polar Bear*
1050 *Traditional Knowledge Study* (Joint Secretariat 2015). This report has been compiled from
1051 a NVivo database of traditional knowledge about polar bear behaviour, ecology, and
1052 distribution collected from more than 70 TK knowledge holders in the six ISR
1053 communities. There has also been work to map denning habitat using both science and TK.
1054 The collection and analysis of TK regarding polar bears and their habitat should continue,
1055 and knowledge gathered should be made available to not only inform management
1056 decisions but also to use in the planning and execution of research and monitoring
1057 programs. More systematic collection of Inuvialuit observations of polar bears would
1058 facilitate the application of knowledge gathered for management purposes. Guidelines have
1059 recently been finalized for conducting TK research based on the experience from the
1060 recently released report, and these should be employed in the ISR.

1061

1062 Approach 1.2: Monitor contaminants in polar bears

1063 Ocean-borne and air-borne contaminants, as well as contaminants related to local resource
1064 development and extraction can have health effects on polar bears and prey. Where
1065 needed, baseline information on contaminants in polar bears should be collected, and
1066 contaminants monitoring should continue on a regular basis. A long-term monitoring plan
1067 for contaminants should be developed. A collaborative approach (inter-jurisdictional and
1068 international) is warranted; consideration of contaminant monitoring in prey is important.

1069

1070 Approach 1.3: Monitor polar bear subpopulations

1071 Monitoring subpopulations is necessary to inform management decisions and assess
1072 whether management actions are appropriate and are addressing threats. Monitoring
1073 includes subpopulation surveys, the collection of harvest data, the collection and
1074 investigation of samples collected from subpopulation surveys and harvests, and
1075 knowledge/information collected regarding polar bear habitat (ice conditions, etc.) and prey
1076 species. Information gathered through monitoring can be used at various scales from
1077 investigation of regional concerns through to broader ecological questions that apply across
1078 polar bear subpopulations (e.g., climate change effects, genetic studies, etc.).

1079

1080 Scientific studies of polar bears in the ISR date back to the 1970s. Following the
1081 completion of current analysis of new data from the Viscount Melville Sound
1082 subpopulation, polar bear subpopulations in the ISR, with the exception of the Arctic
1083 Basin, will have been assessed at least twice since the signing of the International
1084 *Agreement on the Conservation of Polar Bears*. Assessments of polar bear subpopulations

1085 should continue at regular intervals, and alternative methods of surveying subpopulations
1086 while minimizing impacts on bears should be investigated. Evaluation of subpopulation
1087 boundaries should also continue as conditions change and new information becomes
1088 available.

1089
1090 In the ISR, mandatory reporting including information on location and submissions of
1091 proof of age and sex, is required from all human-caused polar bear mortalities. This
1092 regulation has been in place for decades and compliance at a local level is excellent.
1093 Additional sample collections from harvests occur periodically for a variety of projects (i.e.
1094 contaminants monitoring, diet analysis, etc) and should continue.

1095
1096 Over the long term, monitoring data (from various sources) can be used to detect and
1097 understand changes in the status of polar bear subpopulations. Research to address broader
1098 ecological questions that apply across polar bear subpopulations (e.g., climate change
1099 effects, genetic studies, movement patterns, contaminants) is currently underway by
1100 government and academic researchers, and often involves use of samples collected through
1101 harvester cooperation.

1102
1103 A polar bear health monitoring plan should be developed to guide the collection and
1104 analysis of information and samples. The plan should include strategies to monitor polar
1105 bear condition, diet, disease, parasites, contaminant levels, and indicators of stress, and
1106 investigate potential implications of these factors on polar bear health (e.g. development,
1107 reproduction, behaviour, etc.). Such a plan will likely require additional investments from
1108 harvesters, and further collaborations with researchers outside the ISR. For this reason,
1109 guidelines\protocols for data sharing will be required.

1110
1111 **Approach 1.4: Consider best available information on habitat and prey in polar bear**
1112 **management**

1113 Information regarding seals in the ISR is important for polar bears because, as their main
1114 food source, changes to the seal abundance/distribution/health will undoubtedly have
1115 impacts on polar bears. Communication with relevant organizations/agencies is required to
1116 ensure that TK, LK and scientific information on seals in the ISR is available for
1117 consideration in polar bear management decisions.

1118
1119 Sea ice provides the main habitat for polar bears; therefore changes to sea ice distribution,
1120 condition, characteristics, and the timing of growth and ablation of sea ice in the ISR have
1121 potential impacts on polar bears. Communication with relevant organizations/agencies is
1122 required to ensure that information regarding sea ice coverage and conditions and
1123 associated timing is considered in polar bear management decisions.

1124
1125 **Objective 2: Adaptively co-manage polar bears and their habitat in accordance with the**
1126 **best information available**

1127 Polar bears are co-managed in the ISR with an adaptive management approach. The current co-
1128 management process, along with several formal agreements and plans already in place, support
1129 this approach through coordination and collaboration (described in detail in section 2.2.9).

1131 **Approach 2.1: Review information annually to inform adaptive management**

1132 On an annual basis, co-management authorities in the ISR (WMACs and IGC) review the
1133 best available information on polar bears to make management recommendations and
1134 identify research priorities as required in consideration of management objectives for each
1135 polar bear subpopulation. This process occurs in collaboration with jurisdictions that share
1136 management authority for shared polar bear subpopulations.

1137
1138 At scheduled annual meetings, polar bear management authorities should review progress
1139 made as it relates to this management plan, the companion *Framework for Action*
1140 document, and the implementation table (once complete). This annual review should be a
1141 standing agenda item within an existing forum (e.g. at regularly scheduled joint meetings of
1142 the WMACs, at annual Inupiat-Inuvialuit meetings, etc.).

1143
1144 **Approach 2.2: Communicate with harvesters and local communities to foster
1145 information flow in both directions**

1146 Inuvialuit people have an important role to play in managing the polar bear and ensuring its
1147 survival. Continued exchange of information with Inuvialuit is an essential part of this
1148 plan. Communication among governments, WMACs, researchers, IGC, HTCs and ISR
1149 community members about polar bears happens through various means including IGC,
1150 HTC, and community meetings, the ISR Research Day, and more informally through one-
1151 on-one communication between community members and staff employed in the above
1152 noted organizations.

1153
1154 **Approach 2.3: Coordinate with other jurisdictions on a national and international
1155 level**

1156 It is important to work with other jurisdictions to foster the sharing of information,
1157 coordinate research and monitoring, and cooperate regarding polar bear management.
1158 Inter-jurisdictional coordination occurs at various levels as outlined in section 2. For
1159 shared polar bear subpopulations, there are annual Inuvialuit-Inuit and Inuvialuit-Inupiat
1160 meetings held in relation to respective bilateral user-to-user agreements. These meetings
1161 function to review information on polar bears and make recommendations for research and
1162 management as required. Co-management organizations in the ISR participate in various
1163 technical and advisory committees, and other national and international fora concerning
1164 polar bear monitoring and management. The national PBTC provides a venue to discuss
1165 technical issues and share technical advice that, in turn, is reported back to the PBAC, who
1166 fosters a national coordination of management. ISR organizations actively participate
1167 through the Inuit Consult Group for polar bears. Governments, WMACs and Inuvialuit
1168 organizations also work with other countries to ensure that polar bear trade is appropriately
1169 recognized and managed under CITES.

1170
1171 **Objective 3: Encourage wise use of polar bear populations and all polar bear products**

1172 Polar bear harvesting is very important to the Inuvialuit people from a cultural, spiritual,
1173 economic, and subsistence perspective. Integral to this objective is managing harvest wisely.
1174 The current harvest management system (explained in detail in section 5) contains various
1175 features to facilitate the wise use of polar bear populations and their products.

1177 **Approach 3.1: Continue to encourage a male-dominated harvest**

1178 Growth of polar bear subpopulations is directly related to the ability of reproductive
1179 females to successfully rear cubs. Polar bear harvesting quotas in the ISR are set based on
1180 a Total Allowable Harvest under the principle that females do not exceed one third of the
1181 total subpopulation quota.

1182
1183 Inuvialuit-Inuit and Inuvialuit-Inupiat user-to-user agreements and existing HTC by-laws
1184 have objectives and regulations that act to protect female polar bears. They provide
1185 increased protection to female polar bears by encouraging that the female proportion of the
1186 harvest not exceed one-third of the sustainable total. They furthermore have regulations
1187 that protect all bears in dens and constructing dens, as well as all members of a family
1188 group (a mother with one or more cubs-of-the-year or yearlings). When there is a concern
1189 regarding the female proportion of the harvest exceeding one –third of the sustainable total,
1190 appropriate actions (determined through the co-management process) are undertaken to
1191 address the situation. As an example, following an IGC recommendation, community
1192 workshops were held to educate young hunters on how to identify the sex of polar bears, as
1193 well as, the importance of a reduced female harvest; this action was effective.

1194
1195 **Approach 3.2: Manage human-caused mortalities so they do not exceed the quota**

1196 The harvest of polar bear in the ISR is controlled through a quota system with harvest
1197 quotas established and reviewed following co-management and adaptive management
1198 processes described in section 2. Quotas (TAHs) have been established for each polar bear
1199 subpopulation, and are inclusive of both intentional mortalities (harvests) and unintentional
1200 mortalities (e.g. those related to defense of life and property, industrial activities, human-
1201 bear conflict, etc.). The harvest system employs the use of tags to track mortalities and
1202 ensure the quota is not exceeded.

1203
1204 **Approach 3.3: Continue to manage guided hunts to achieve conservation benefits**

1205 Inuvialuit have exclusive rights to harvest polar bears in the ISR in accordance with the
1206 IFA. Inuvialuit may choose to transfer their hunting rights through a process involving
1207 allocating hunting tags to non-resident hunters that are guided by Inuvialuit. Tags for
1208 guided hunts are not reallocated if the hunt is unsuccessful and thus have a conservation
1209 implication because the tag is counted as part of the quota, however there is no associated
1210 harvested bear.

1211
1212 **Approach 3.4: Continue to regulate polar bear trade**

1213 To encourage the wise use of the polar bear population and all polar bear products is also
1214 an objective of the Inuvialuit-Inupiat and Inuvialuit-Inuit user-to-user agreements. The
1215 Inuvialuit-Inupiat agreement states that each jurisdiction shall prohibit the exportation
1216 from, the importation and delivery into, and traffic within its territory, of polar bears or any
1217 part of product thereof taken in violation of this Agreement. Inuvialuit also discourage the
1218 export of gall bladders and paws recognizing the underground market implications of these
1219 products. Fundamental to regulating trade of polar bears is the employment of a permitting
1220 system. Permits continue to be required for domestic and international export of bears
1221 taken in the ISR and new technologies are being explored to improve the traceability of
1222 hides, i.e., use of personal identification (PIT) tags.

1223
1224 **Approach 3.5: Explore tools to investigate impacts of harvest on subpopulation trend**
1225 The impact of harvesting from a population that is declining due to environmental factors
1226 that may be causing the carrying capacity to decline is complicated. To encourage the wise
1227 use of the polar bear population and all polar bear products is an objective of the Inuvialuit-
1228 Inupiat and Inuvialuit-Inuit user-to-user agreements. In order to investigate the impacts of
1229 harvest on subpopulation trend a model has been developed (Regehr et al. 2015) and
1230 workshops are planned to better understand the model and discuss its application in the
1231 ISR.
1232

1233 **Objective 4: Minimize detrimental effects of human activities on polar bears and their**
1234 **habitat**

1235 Human activities (such as industrial exploration and development, research, tourism and
1236 shipping) can have unintended impacts on polar bears. These can include habitat change,
1237 disturbance of bears, effects on health, and even mortality. This objective aims to prevent or
1238 minimize those negative impacts.
1239

1240 **Approach 4.1: Minimize detrimental effects of human-bear conflicts**
1241 Human-bear conflicts often result in a negative outcome for the bear (e.g. mortality or
1242 injury as a result of action taken in defense of life and property, separation of mothers from
1243 dependent cubs). The number of human-bear conflicts could be reduced by developing and
1244 promoting best practices and guidelines for working in polar bear habitat (e.g. reducing
1245 attractants, safe deterrence of polar bears, and bear awareness training).
1246

1247 An international Polar Bear-Human Information Management System (PBHIMS) has been
1248 developed and work is underway to implement this system in the ISR. The systematic
1249 collection of human-bear conflicts facilitates information being available for adaptive
1250 management, particularly as more is learned about human-bear conflicts.
1251

1252 Co-management partners continue to work to reduce human-bear conflicts in communities
1253 in the ISR (e.g. by reducing attractants), and there are now renewable resource personnel in
1254 each community to support these efforts. Supporting community bear patrols can also help
1255 to minimize human-bear conflicts. Additionally, the existing wildlife research permitting
1256 process encourages researchers to minimize their impacts on polar bears through feedback
1257 from organizations who review permits.
1258

1259 **Approach 4.2: Minimize detrimental effects of research on polar bears**
1260 Research techniques such as collaring, capture, and immobilization can have negative
1261 impacts on polar bears. Work is underway to better understand these effects through the
1262 sharing of information on bears handled and any documented impacts (currently occurring
1263 through the NWT Wildlife Care Committee reporting process, and also at the PBTC level).
1264 Further research regarding the impacts of handling is warranted. Alternate less invasive
1265 methods for subpopulation monitoring are being investigated (e.g. aerial survey methods).
1266 The need for polar bear research and monitoring should be evaluated alongside information
1267 it will provide and in consideration of potential impacts. Advice regarding how impacts on
1268 polar bears can be minimized primarily occurs through the NWT Wildlife Care Committee

1269 review, permitting, and reporting process, however, can also occur through the wildlife
1270 research permitting process. Agencies in the ISR will continue to advocate for a power
1271 analysis of existing data to inform sample size and methodology decisions in polar bear
1272 research.

1273

1274 **Approach 4.3: Minimize detrimental effects of development and industrial activity on**
1275 **polar bears**

1276 There are several ways in which potential negative impacts of industry and other human
1277 activities on polar bears and their habitat can be mitigated. These include identifying and
1278 mitigating impacts through the regulatory system; identifying key habitats where special
1279 care is needed to operate (e.g., denning habitat) or seasonal and long-term “no-go” areas
1280 identified; developing protocols for industry, and shipping traffic to avoid disturbance of
1281 polar bears; developing an oil spill response plan specific to polar bears; and tracking
1282 cumulative impacts of human activity on polar bear habitat.

1283

1284 The WMACs, IGC, and governments provide information and guidance into processes of
1285 screening, environmental impact assessment and project approvals, on how to minimize
1286 impacts of development on polar bears and their habitat. This primarily occurs through the
1287 EISC and EIRB. The EISC acts to identify proposed developments that could have a
1288 significant negative environmental impact and the EIRB carries out detailed environmental
1289 impact assessments and public reviews of development projects. EIRB determines whether
1290 a project should proceed and, if so, under what specific terms and conditions, with
1291 recommendations to the appropriate federal and territorial ministers.

1292

1293 Polar bear dens are protected under both the NWT and Yukon Wildlife Acts. Furthermore,
1294 co-management partners work with industry to identify and survey potential denning
1295 habitat and, when necessary, implement exclusion zones and enhanced monitoring around
1296 active dens.

1297

1298 There are several protected areas within the ISR polar bear range, including National Parks,
1299 Migratory Bird Sanctuaries, Territorial Parks, and Marine Protected Areas.

1300

1301 With respect to marine-based tourism, a suite of guidelines have been developed by the
1302 Association of Arctic Expedition Cruise Operators to avoid or minimise adverse effects on
1303 polar bears among other species (<http://www.aeco.no/>).

1304

1305 There are also various international treaties that aim to eliminate or restrict the production
1306 and use of pollutants (e.g. the 2004 *Stockholm Convention on Persistent Organic*
1307 *Pollutants*).

1308

1309 **Objective 5: Communicate and share information on polar bears and impacts of climate**
1310 **change on polar bears**

1311 Communicating information regarding polar bears and how they are impacted by climate change
1312 with audiences within and beyond the ISR helps to build and maintain support for adaptive co-
1313 management of polar bears in the ISR. It furthermore increases awareness of the effects of
1314 climate change on polar bears and encourages action to reduce greenhouse gas emissions.

1315
1316 **Approach 5.1: Encourage youth stewardship of polar bears in the ISR**

1317 Communicating and sharing information effectively with youth is equally as important as
1318 with their parents (see approach 2.2). Youth become the next generation of harvesters and
1319 managers and it is essential to convey messages that promote stewardship. Elders in
1320 particular have noted the importance of passing along TK to the youth in their
1321 communities. There are a number of ways for youth to acquire knowledge about polar
1322 bears, including participating in hunting, attending HTC and other meetings, social media,
1323 online, and through books and oral history. Information is shared through generations, and
1324 in this way, responsible polar bear users and stewards are developed for generations to
1325 come.

1326
1327 **Approach 5.2: Enhance national and international communications with a particular**
1328 **focus on climate change impacts on polar bears**

1329 Polar bears are a high profile species that gains attention from diverse audiences at multiple
1330 jurisdictional levels. Perspectives regarding polar bear management are widespread. For
1331 this reason, effective national and international communication is essential. Promoting the
1332 adaptive manner in which polar bears are co-managed within the ISR builds support and
1333 understanding and facilitates others to learn from the ISR's model.

1334
1335 Inuvialuit groups, WMACs, and governments participate in various national and
1336 international conferences and events to communicate how polar bears are managed in the
1337 ISR as well as the cultural importance of polar bears to the Inuvialuit. On an international
1338 level, co-management partners have developed fact sheets on polar bear management in
1339 Canada, as well as specifically within the NWT. Information on polar bears in Canada is
1340 available from various avenues and a joint effort to consolidate and share information
1341 through the Inuit Tapiriit Kanatami (ITK) website is currently underway.

1342
1343 It is important to communicate with national and international audiences regarding the
1344 effects of climate change on polar bears. Effective communication can encourage action at
1345 various levels (from individual to national), which is necessary to reduce greenhouse gas
1346 emissions and mitigate climate change, therefore reducing its impact on polar bears.

1347
1348

7. MEASURING PROGRESS

1349
1350 Management will be considered successful if the overall goal is achieved; that is, ensuring the
1351 long-term persistence of healthy polar bears in the ISR while maintaining traditional Inuvialuit
1352 use. A measure of overall success will be if the status of polar bear has not become threatened or
1353 endangered when reassessed (as indicated by its status in NWT as assessed by SARC every 10
1354 years, and its status in Canada as assessed by COSEWIC every 10 years). Another measure of
1355 overall success will be if the population allows for continued subsistence harvest and use of polar
1356 bears (as indicated by the Total Allowable Harvest (TAH) available).

1357
1358 In order to measure progress, the partners have agreed to performance measures for each
1359 approach under the five objectives (Table 4). Five years after the signing of the plan, the

1360 management agencies for polar bear in the ISR will report on progress under this management
1361 plan. The performance measures and indicators in Table 4 may be used to measure progress.
1362

1363
1364**Table 4. Management approaches to achieve objectives identified**

Management approach	Relative Priority ¹ / Time frame ²	Threats and\or knowledge gaps addressed	Performance Measure ³	Indicator
Objective #1: Collect traditional knowledge, scientific knowledge and monitoring information in a timely manner to inform management decisions				
1.1 Document traditional knowledge and use traditional knowledge to inform management decisions on an ongoing basis	Critical / Ongoing	Potential to address knowledge gaps and provide information on threats	Traditional knowledge is collected and available Traditional knowledge is integrated into polar bear assessments	Information has been collected and is accessible to managers Use of traditional knowledge in polar bear status assessments
1.2 Monitor contaminants in polar bears	Beneficial Short term and Ongoing	Impacts of offshore oil and gas exploration and development (including oil spills) Pollution and the accumulation of environmental contaminants Shifts in contaminant levels Baseline contaminant levels related to oil and gas activities	Baseline levels are established for key contaminants Contaminants monitoring program is in place	Baseline information available Approved monitoring plan and reports on its implementation
1.3 Monitor polar bear subpopulations	Critical Ongoing	Habitat change due to climate change Disease Shifts in movements and distribution Understanding of sub-lethal	Subpopulation inventories are conducted with partners at an appropriate frequency	New subpopulation estimates completed and results provided to decision makers and communities Information on polar bear health and condition has been collected and is

Management approach	Relative Priority ¹ / Time frame ²	Threats and\or knowledge gaps addressed	Performance Measure ³	Indicator
		impacts of contaminants and disease at an individual and population level Human-caused mortality	Information on polar bear health and condition is collected and available	accessible to managers
1.4 Consider best available information on habitat and prey in polar bear management	Critical Ongoing	Shifts in prey abundance, availability and subsequent impact on polar bear diet Habitat change due to climate change Climate-induced changes in the Arctic ecosystem and the impacts these have on polar bears	Information on habitat and prey is taken into account in management	Information made available and considered by managers
Objective #2: Adaptively co-manage polar bears and their habitat in accordance with the best information available				
2.1 Review information annually to inform adaptive management	Critical Ongoing		Management partners share information about the subpopulations and review management on a regular basis Quota reviewed annually	Management partners meet annually to review information and consider management recommendations (including those from Inuvialuit-Inuit and Inuvialuit-Inupiat) Status report for species under quota is provided annually to boards
2.2 Communicate with harvesters and local communities to foster information flow in both	Critical Ongoing	Potential to address knowledge gaps and provide information on threats	Communities and HTCs are informed about polar bear management issues	Polar bear management documents/products provided to HTCs and communities

Management approach	Relative Priority ¹ / Time frame ²	Threats and\or knowledge gaps addressed	Performance Measure ³	Indicator
directions			Managers are informed about community and HTC concerns/priorities	Concerns/priorities are addressed appropriately
2.3 Coordinate with other jurisdictions on a national and international level	Necessary Ongoing	Potential to address knowledge gaps and provide information on threats	ISR issues are brought to national and international meeting fora	Partners attend and provide updates at meetings of: Inuvialuit-Inupiat Inuit –Inuvialuit Polar Bear Technical Committee Polar Bear Administrative Committee Polar Bear Specialist Group Range states (biennial) Canada-US oversight group Relevant national Inuit agencies Federal government coordination groups
Objective #3: Encourage wise use of polar bear populations and all polar bear products				
3.1 Continue to encourage a male-dominated harvest	Critical Ongoing	Human-caused mortality	Female mortalities do not repeatedly exceed one third of quota	Total number of female polar bear human-caused mortalities in relation to the quota
3.2 Manage human-caused mortalities so they do not exceed the quota	Critical Ongoing	Human-caused mortality	Number of human-caused mortalities (from all sources) remains at or under quota Number of bear-human occurrences resulting in bear fatalities does not	Total number of polar bear human-caused mortalities in relation to the quota Number of DLPs (defense of life and property mortalities)

Management approach	Relative Priority ¹ / Time frame ²	Threats and\or knowledge gaps addressed	Performance Measure ³	Indicator
			increase	
3.3 Continue to managed guided hunts to achieve conservation benefits	Necessary Ongoing	Human-caused mortality	Regulation maintained that unsuccessful guided hunt tags cannot be reallocated	Track success rate of guided hunts
3.4 Continue to regulate polar bear trade	Necessary Ongoing	Human-caused mortality	Export permits are required and tracked with appropriate confirmation of non-detrimental finding Mechanisms in place to improve tracking	Trade data provided annually
Objective #4: Minimize detrimental effects of human activities on polar bears and their habitat				
4.1 Minimize detrimental effects of human-bear conflicts	Necessary Ongoing	Human-caused mortality	Number of bear-human conflicts does not increase Proportion of bear-human conflicts resulting in bear injury or fatality does not increase	Recording of bear-human conflicts by international standards Number of bear- human conflicts resulting in bear injury or fatality
4.2 Minimize detrimental effects of research on polar bears	Necessary Ongoing	Invasive research techniques used on bears Effectiveness of alternative (less invasive) monitoring\research techniques for	Less invasive /intensive techniques are being researched and are being employed	Number of bears handled or immobilized Number of injuries or mortalities related to research method

Management approach	Relative Priority ¹ / Time frame ²	Threats and\or knowledge gaps addressed	Performance Measure ³	Indicator
		subpopulations in the ISR		
4.3 Minimize detrimental effects of development and industrial activity on polar bears	Critical Ongoing	Impacts of offshore oil and gas exploration and development (including oil spills) Marine traffic	Guidance and protocols on best practices are available and used during regulatory process Best available information is accessible for mitigation purposes	Guidance and protocols referenced and accepted in regulatory decisions Polar bear information is used for mitigation purposes in regulatory decisions
Objective #5: Communicate and share information on polar bears and impacts of climate change on polar bears				
5.1 Encourage youth stewardship of polar bears in the ISR	Necessary Ongoing	Human-caused mortality Bear-human conflicts Habitat change due to climate change	Knowledge level of youth has increased with respect to polar bear management	Number of engagements with youth
5.2 Enhance national and international communications with a particular focus on climate change impacts on polar bears	Beneficial Ongoing	Habitat change due to climate change	Products and information are available to a global audience	Website visitation and number of downloads Number of media/public engagements and presentations (local and international)

1365
1366
1367
1368
1369
1370
1371

¹**Relative priority** can be *critical*, *necessary* or *beneficial*. *Critical* approaches are the highest priority for the conservation of polar bear and should be implemented sooner rather than later. *Necessary* approaches are important to implement for the conservation of polar bear but with less urgency than *critical*. *Beneficial* approaches help to achieve management goals but are less important to the conservation of the species compared to *critical* or *necessary*.

²**Relative timeframe** can be *short-term*, *long-term*, or *ongoing*. *Short-term* approaches should be completed within five years and *long-term* approaches require more than five years to complete. *Ongoing* approaches are long-term actions carried out repeatedly on a systematic basis.

1372 ³ Implementation of this co-management plan and companion document is subject to appropriations, priorities, and budgetary constraints of
1373 the participating management organizations. This table represents guidance from all partners as to the priority of the approaches and
1374 appropriate measure of performance.
1375
1376

1377

1378 **8. NEXT STEPS**

1379

1380 The companion document, *Framework for Action, a companion document to the ISR Polar Bear*
1381 *Co-Management Plan* will be used to develop an implementation table.

1382

1383 In five years the management agencies for polar bear in the ISR will formally report on progress
1384 under this management plan. In ten years, or at the request of a management partner, this
1385 management plan and the companion *Framework for Action* will be reviewed and revised as
1386 required. This process will continue as long as polar bear is listed as a species of special concern
1387 under the *Species at Risk (NWT) Act* and\or SARA.

1388

1389 This management plan may be adopted under the NWT Species at Risk and\or federal SARA
1390 processes.

1391

1392 **This management plan does not commit any party to actions or resource expenditures;**
1393 **implementation of this plan is subject to budgetary appropriations, priorities, and**
1394 **constraints of the participating management agencies.**

1395

1396

1397 REFERENCES

1398

1399 1400 1401 1402 Aboriginal Affairs and Northern Development Canada (AANDC) 2015. Northern oil and gas annual report 2014. Aboriginal Affairs and Northern Development Canada. Available online: <https://www.aadnc-aandc.gc.ca/eng/1431106507542/1431106696195> [Accessed February 18, 2016].

1403 1404 1405 1406 Agreement on the Conservation of Polar Bears (International). 1973. The Governments of Canada, Denmark, Norway, the Union of Soviet Socialist Republics and the United States of America. Available online: http://www.registrelep-sararegistry.gc.ca/document/default_e.cfm?documentID=74 [Accessed June 2, 2016].

1407 1408 Alaska Dispatch News. 2015. Available online: <http://www.adn.com/article/20150906/locals-biologists-free-polar-bear-caught-fishing-net-arctic-alaska> [Accessed February 18, 2016].

1409 1410 Amstrup, S.C. 1993. Human disturbances of denning polar bears in Alaska. Arctic 46(3): 246-250.

1411 1412 1413 Amstrup S.C., G.M. Durner, T.L. McDonald, and W.R. Johnson. 2006. Estimating potential effects of hypothetical oil spills on polar bears. U.S. Department of the Interior, U.S. Geological Survey, Report, 56 p.

1414 1415 Arctic Council. 2009. Arctic Marine Shipping Assessment 2009. Report. Arctic Council. Available online: http://www.arctic.noaa.gov/detect/documents/AMSA_2009_Report_2nd_print.pdf [Accessed February 18, 2016].

1418 1419 1420 Arctic Monitoring and Assessment Programme (AMAP). 2005. AMAP Assessment 2002 - Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme, Oslo, Norway

1421 1422 1423 Arctic Monitoring and Assessment Programme (AMAP). 2010. AMAP Assessment 2009 - Persistent Organic Pollutants (POPs) in the Arctic. Science of the Total Environment Special Issue. 408:2851-3051. Elsevier, 2010

1424 1425 Arctic Monitoring and Assessment Programme (AMAP). 2011. AMAP Assessment 2011: Mercury in the Arctic. AMAP, Oslo. 2011

1426 1427 1428 1429 Atwood, T., E. Peacock, K. Burek-Huntington, V. Shearn-Bochsler, B. Bodenstein, K. Beckmen, and G. Durner. 2015. Prevalence and spatio-temporal variation of an alopecia syndrome in polar bears (*Ursus maritimus*) of the southern Beaufort Sea. Journal of Wildlife Diseases 51:48-59.

1430 1431 1432 Bradley, M. J., S. J. Kutz, E. Jenkins, and T. M. O'Hara. 2005. The potential impact of climate change on infectious diseases of Arctic fauna. International Journal of Circumpolar Health 64:468-477.

1433 Canada National Parks Act. (S.C. 2000, c.32). Available online: <http://laws-lois.justice.gc.ca/PDF/N-14.01.pdf> [Accessed: June 2, 2016].

1435 Canadian Environmental Assessment Act (S.C. 2012. C. 19, s.52). Available online: <http://laws-lois.justice.gc.ca/PDF/C-15.21.pdf> [Accessed: June 2, 2016].

1437 Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES).
1438 2016. Appendix I, II and III. Available online:
1439 <https://cites.org/sites/default/files/eng/app/2016/E-Appendices-2016-03-10.pdf>
1440 [Accessed: June 2, 2016].

1441 COSEWIC. 2008. COSEWIC assessment and update status report on the polar bear *Ursus maritimus* in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa. vii + 75 p.

1444 Derocher, A. E., N. J. Lunn, and I. Stirling. 2004. Polar bears in a warming climate. Integrative and Comparative Biology 44:163-176

1446 Durner, G. M., D. C. Douglas, R. M. Nielson, S. C. Amstrup, T. L. McDonald, I. Stirling, M. Mauritzen, E. W. Born, Ø. Wiig, E. DeWeaver, M. C. Serreze, S. E. Belikov, M. M. Holland, J. Maslanik, J. Aars, D. A. Bailey, and A. E. Derocher. 2009. Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs 79:25-58

1451 Durner, G. M., J. P. Whiteman, H. J. Harlow, S. C. Amstrup, E. V. Regehr, and M. Ben-David. 2011. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biology 34:975-984

1454 Elmore, S. A., E. J. Jenkins, K. P. Huyvaert, L. Polley, J. J. Root, and C. G. Moore. 2012. *Toxoplasma Gondii* in circumpolar people and wildlife. Vector-Borne and Zoonotic Diseases 12:1-9.

1457 ENR. 2015. NWT State of the Environment Report. 7. Human Activities: Trends in Shipping in the Northwest Passage and the Beaufort Sea. Environment and Natural Resources, Government of the Northwest Territories. Available online: <http://www.enr.gov.nt.ca/state-environment/73-trends-shipping-northwest-passage-and-beaufort-sea>, [Accessed March 31, 2016].

1462 Fagre, A.C., K.A. Patyk, P. Nol, T. Atwood, K. Hueffer, and C. Duncan. 2015. A review of infectious agents in polar bears (*Ursus maritimus*) and their long-term ecological relevance. Ecohealth 12:528-539.

1465 Forbes, L. B. 2000. The Occurrence and ecology of *Trichinella* in marine mammals. Veterinary Parasitology 93:321-334.

1467 Fischbach, A., S. Amstrup, and D. Douglas. 2007. Landward and eastward shift of Alaskan polar bear denning associated with recent sea ice changes. Polar Biology 30:1395-1405.

1469 Griswold J., T. McDonald, M. Branigan, E.V. Regeher, S.C Amstrup. Unpublished. Southern
1470 and northern Beaufort Sea polar bear population estimates under a proposed boundary
1471 shift. Draft Manuscript Report.

1472 Hunter, C. M., H. Caswell, M. C. Runge, E. V. Regehr, S. C. Amstrup, and I. Stirling. 2010.
1473 Climate change threatens polar bear populations: a stochastic demographic analysis.
1474 Ecology 91:2883-2897.

1475 Indian and Northern Affairs Canada (INAC). 2007. Oil and Gas Exploration & Production in the
1476 Northwest Territories. Petroleum Development Division, Indian and Northern Affairs
1477 Canada, Yellowknife, NT. Available online: <https://www.aadnc-aandc.gc.ca/eng/1100100023703/1100100023705> [Accessed May 25, 2016].

1479 Inuvialuit Final Agreement (IFA) The Western Arctic Claim. 1984. Indian and Northern Affairs
1480 Canada. Ottawa. Available online:
1481 http://www.eco.gov.yk.ca/aboriginalrelations/pdf/western_arctic_claim_inuvialuit_fa.pdf
1482 [Accessed June 2, 2016].

1483 Inuvialuit-Inupiat Polar Bear Management Agreement in the Southern Beaufort Sea. 1988.
1484 Available online: <http://www.fws.gov/alaska/fisheries/mmm/polarbear/pdf/I->
1485 [I%20Agreemnt%20signed%20March%202000.pdf](http://www.fws.gov/alaska/fisheries/mmm/polarbear/pdf/I%20Agreemnt%20signed%20March%202000.pdf) [Accessed June 2, 2016].

1486 Jeffries, M. O., J. E. Overland, and D. K. Perovich. 2013. The Arctic shifts to a new normal.
1487 Physics Today 66: doi: 10.1063/PT.3.2147.

1488 Jensen, S. K., J. Aars, C. Lydersen, K. M. Kovacs, and K. Asbakk. 2010. The prevalence of
1489 *Toxoplasma gondii* in polar bears and their marine mammal prey: evidence for a marine
1490 transmission pathway. Polar Biology 33:599-606.

1491 Joint Secretariat. 2015. Inuvialuit and Nanuq: A Polar Bear Traditional Knowledge Study. Joint
1492 Secretariat, Inuvialuit Settlement Region. 304 pp.

1493 Kirk, C., S. Amstrup, R. Swor, D. Holcomb, and T. O'Hara. 2010. Morbillivirus and *Toxoplasma*
1494 Exposure and association with hematological parameters for Southern Beaufort Sea polar
1495 bears: potential response to infectious agents in a sentinel species. EcoHealth 7:321-331.

1496 McKinney, M. A., S. J. Iverson, A. T. Fisk, C. Sonne, F. F. Rigét, R. J. Letcher, M. T. Arts, E.
1497 W. Born, A. Rosing-Asvid, and R. Dietz. 2013. Global change effects on the long-term
1498 feeding ecology and contaminant exposures of East Greenland polar bears. Global
1499 Change Biology 19:2360-2372

1500 Miller, S., J. Wilder, and R.R. Wilson. 2015. Polar bear–grizzly bear interactions during the
1501 autumn open-water period in Alaska. Journal of Mammalogy,
1502 DOI:10.1093/jmammal/gv140

1503 Memorandum of Understanding between Environment Canada and the United States Department
1504 of the Interior for the Conservation and Management of Shared Polar Bear Populations.
1505 2008. Environment Canada. Available online:

1506 <https://www.ec.gc.ca/international/default.asp?lang=En&n=6D70FB59-1> [Accessed June
1507 2, 2016].

1508 Monnett, C. and J. Gleason. 2006. Observations of mortality associated with extended open-
1509 water swimming by polar bears in the Alaskan Beaufort Sea. *Polar Biology* **29**:681-687

1510 National Conservation Strategy. 2011. National Polar Bear Conservation Strategy for Canada.
1511 Available online: <http://ec.gc.ca/nature/default.asp?lang=En&n=60D0FDBD-1> [Accessed
1512 February 19, 2016]

1513 National Oceanic and Atmospheric Administration (NOAA) Marine Debris Program. 2014
1514 Report on the Occurrence and Health Effects of Anthropogenic Debris Ingested by
1515 Marine Organisms. Silver Spring, MD. 19 pp

1516 O'Hara, T. M., D. Holcomb, P. Elzer, J. Estepp, Q. Perry, S. Hagius, and C. Kirk. 2010. *Brucella*
1517 species survey in polar bears (*Ursus maritimus*) of Northern Alaska. *Journal of Wildlife
1518 Diseases* **46**:687-694.

1519 Ortsland, N.A., F.R Engelhardt, F.A. Juck, R.A. Hurst, and P.D. Watts. 1981. Effect of Crude
1520 Oil on Polar Bears. Environmental Studies Report No. 24. Northern Affairs Program,
1521 Department of Indian Affairs and Northern Development, Ottawa, Ontario, Canada

1522 Pagano, A. M., G. M. Durner, S. C. Amstrup, K. S. Simac, and G. S. York. 2012. Long-distance
1523 swimming by polar bears (*Ursus maritimus*) of the southern Beaufort Sea during years of
1524 extensive open water. *Canadian Journal of Zoology* **90**:663-676

1525 Philippa, J. D. W., F. A. Leighton, P. Y. Daoust, O. Nielsen, M. Pagliarulo, H. Schwantje, T.
1526 Shury, R. Van Herwijnen, B. E. E. Martina, I. Kuiken, M. W. G. Van De Bildt, and A.
1527 Osterhaus. 2004. Antibodies to selected pathogens in free-ranging terrestrial carnivores
1528 and marine mammals in Canada. *Veterinary Record* **155**:135-140.

1529 Polar Bear Management Agreement for the North Beaufort Sea and Viscount-Melville Sound
1530 Polar Bear Populations between the Inuit of the Kitikmeot West Region in Nunavut and
1531 the Inuvialuit. 2006. Available online: <http://jointsecretariat.ca/wp-content/uploads/2015/11/KitikmeotInuvialuitPBAgreement20Feb2006.pdf> [Accessed
1532 June 2, 2016].

1533

1534 Polar Bear Range States. 2015. Circumpolar Action Plan: Conservation Strategy for Polar Bears.
1535 A product of the representatives of the parties to the 1973 Agreement on the
1536 Conservation of Polar Bears. Available at:
1537 http://naalakkersuisut.gl/~media/Nanoq/Files/Attached%20Files/Fiskeri_Fangst_Landbrug/Polarbear%202015/CAP/CAP%20Book.pdf [Accessed June 2, 2016].

1538

1539 Polar Bear Technical Committee (PBTC). 2015. Status Table 2015. Approved by the Polar Bear
1540 Administrative Committee.

1541 Rah, H., B. B. Chomel, E. H. Follmann, R. W. Kasten, C. H. Hew, T. B. Farver, G. W. Garner,
1542 and S. C. Amstrup. 2005. Serosurvey of selected zoonotic agents in polar bears (*Ursus*
1543 *maritimus*). *Veterinary Record* 156:7-13.

1544 Reidlinger, D. 2001. Community-based assessments of change: Contributions of Inuvialuit
1545 Knowledge to Understanding Climate Change in the Canadian Arctic. M.Sc. dissertation.
1546 National Resource Institute. University of Manitoba, Winnipeg, MB. 139 pp.

1547 Regehr, E. V., C. M. Hunter, H. Caswell, S. C. Amstrup, and I. Stirling. 2010. Survival and
1548 breeding of polar bears in the southern Beaufort Sea in relation to sea ice. *Journal of*
1549 *Animal Ecology* 79:117-127

1550 Regehr, E.V., S.C. Amstrup, and I. Stirling. 2007. Polar Bear Population Status in the Southern
1551 Beaufort Sea. USGS Open-File Report 2006-1337, 20 p.

1552 Regehr, E.V., R.R. Wilson, K.D. Rode, and M.C. Runge. 2015. Resilience and risk – A
1553 demographic model to inform conservation planning for polar bears. U.S. Geological
1554 Open File Report 2105-1029, 56p. <http://dx.doi.org/10.3133/ofr20151029>

1555 Rode, K. D., S. C. Amstrup, and E. V. Regehr. 2010. Reduced body size and cub recruitment in
1556 polar bears associated with sea ice decline. *Ecological Applications* 20:768-782

1557 Rode, K. D., E. V. Regehr, D. C. Douglas, G. Durner, A. E. Derocher, G. W. Thiemann, and S.
1558 M. Budge. 2014a. Variation in the response of an Arctic top predator experiencing habitat
1559 loss: feeding and reproductive ecology of two polar bear populations. *Global Change*
1560 *Biology* 20:76-88

1561 Rode, K.D., A.M. Pagano, J.F. Bromaghin, T.C. Atwood, G.M. Durner, K.S. Simac and S.C.
1562 Amstrup. 2014b. Effects of capturing and collaring on polar bears: findings from long-
1563 term research on the southern Beaufort Sea population. *Wildlife Research* 41:311-322

1564 Rodgers, L. L. and S. M. Rodgers. 1977. Parasites of bears: a review. *Bear Research and*
1565 *Management* 3: 411-430.

1566 Serreze, M. C., M. M. Holland, and J. Stroeve. 2007. Perspectives on the Arctic's shrinking sea-
1567 ice cover. *Science* 315:1533-1536.

1568 Sonne, C. 2010. Health effects from long-range transported contaminants in Arctic top predators:
1569 An integrated review based on studies of polar bears and relevant model species.
1570 *Environment international* 36:461-491.

1571 *Species at Risk Act* (S.C. 2002, c. 29). Available online: <http://laws-lois.justice.gc.ca/PDF/S-15.3.pdf> [Accessed: June 2, 2016].

1573 *Species at Risk (NWT) Act*. S.N.W.T. 2009,c.16. Available online:
1574 <https://www.justice.gov.nt.ca/en/files/legislation/species-at-risk/species-at-risk.a.pdf?v9234> [Accessed: June 2, 2016].

1576 Species at Risk Committee (SARC). 2012. Species Status Report for Polar Bear (*Ursus*
1577 *maritimus*) in the Northwest Territories. Species at Risk Committee, Yellowknife, NT.
1578 Available online: www.nwtspeciesatrisk.ca

1579 St. Aubin, D.J. 1990. Physiologic and toxic effects on polar bears. Pages 235-239 in J.R. Geraci
1580 and D.J. St Aubin, editors. Sea mammals and oil: confronting the risks. Academic Press,
1581 Inc. New York, New York, USA

1582 Stirling, I., T. L. McDonald, E. S. Richardson, E. V. Regehr, and S. C. Amstrup. 2011. Polar
1583 bear population status in the Northern Beaufort Sea, Canada, 1971-2006. Ecological
1584 Applications **21**:859-876

1585 Stirling, I., T.L. McDonald, E.S. Richardson, and E.V. Regehr. 2007. Polar bear population
1586 status in the northern Beaufort Sea. USGS Administrative Report, Anchorage, Alaska,
1587 USA, 33 p

1588 Taylor, M., B. Elkin, N. Maier, and M. Bradley. 1991. Observation of a polar bear with rabies.
1589 Journal of Wildlife Diseases **27**:337-339.

1590 Taylor, M.K., J. Laake, D. Cluff, M. Ramsay, and F. Messier. 2002. Managing the risk from
1591 hunting for the Viscount Melville Sound polar bear population. Ursus **13**:185-202

1592 Thiemann, G. W., A. E. Derocher, S. G. Cherry, N. J. Lunn, E. Peacock, and V. Sahanatien.
1593 2013. Effects of chemical immobilization on the movement rates of free-ranging polar
1594 bears. Journal of Mammalogy **94**:386-397

1595 Thiemann, G. W., S. J. Iverson, and I. Stirling. 2008. Polar bear diets and Arctic marine food
1596 webs: insights from fatty acid analysis. Ecological Monographs **78**:591-613

1597 U.S. Department of Interior, Minerals Management Service (DoIMMS). 2002. Liberty
1598 Development and Production Plan Final Environmental Impact Statement. OCS EIS/EA
1599 MMS 2002-020.

1600 USFWS. 2010. Designation of critical habitat for the polar bear (*Ursus maritimus*) in the United
1601 States; Final Rule. Federal Register **75**:76086-76137

1602 USFWS. 2015. Polar Bear (*Ursus maritimus*) Conservation Management Plan Draft. U.S. Fish
1603 and Wildlife, Region 7, Anchorage, Alaska. 59p

1604 Vongraven, D., J. Aars, S. Amstrup, S. N. Atkinson, S. Belikov, E. W. Born, T. D. DeBruyn, A.
1605 E. Derocher, G. Durner, M. Gill, N. Lunn, M. E. Obbard, J. Omelak, N. Ovsyanikov, E.
1606 Peacock, E. Richardson, V. Sahanatien, I. Stirling, and Ø. Wiig. 2012. A circumpolar
1607 monitoring framework for Polar Bears. Ursus **23**:1-66

1608 Whiteman, J.P., H. J. Harlow, G. M. Durner, R. Anderson-Sprecher, S. E. Albeke, E. V. Regehr,
1609 S. C. Amstrup, M. Ben-David. 2015. Summer declines in activity and body temperature
1610 offer polar bears limited energy savings. Science **349**:295-298

1611 Wilson, K.J., J. Falkingham, H. Melling and R. De Abreu. 2004. Shipping in the Canadian
1612 Arctic. Canadian Ice Service, Ottawa, Canada.

1613 *Wildlife Act.* S.N.W.T. 2013,c.30. Available online:
1614 <https://www.justice.gov.nt.ca/en/files/legislation/wildlife/wildlife.a.pdf> [Accessed:
1615 June 2, 2016].

1616 *Wildlife Act.* RSY 2002, c. 229. Available online:
1617 http://www.gov.yk.ca/legislation/acts/wildlife_c.pdf [Accessed: June 2, 2016].

1618 WMAC (NS) 2008. Available online: http://www.wmacns.ca/pdfs/210_HarvestingRights-web.pdf [Accessed February 18, 2016].

1620 WMAC (NWT) 25July 2011 – Letter to ENR Minister re: Recommendations for Northern
1621 Beaufort Sea polar bear population boundary change and Total Allowable Harvest.
1622 Inuvik, Northwest Territories.

1623 Yukon Environmental and Socioeconomic Assessment Act. S.C. 2003, c. 7. Available online:
1624 <http://laws-lois.justice.gc.ca/PDF/Y-2.2.pdf> [Accessed: June 2, 2016].
1625
1626

1627 **Appendix A: Additional Traditional Knowledge about ISR Polar** 1628 **Bear**

1629
1630 The following information is from: *Joint Secretariat. 2015. Inuvialuit and Nanuq: A Polar Bear*
1631 *Traditional Knowledge Study. Joint Secretariat, Inuvialuit Settlement Region. xx + 304 pp.*

1632
1633 Inuvialuit have been hunting polar bears — nanuq — in Canada's Western Arctic for generations
1634 and for as long as memory serves. Sharing of information, knowledge and understanding of
1635 nanuq from one generation to the next, based on experience, is the very foundation of Inuvialuit
1636 traditional knowledge. Inuvialuit hunters have witnessed changes firsthand — some slow, others
1637 rapid — to the same environmental conditions that they share with polar bears and with seals, an
1638 important prey species of polar bears. Especially since the 1980s, Inuvialuit have seen changes in
1639 climate, weather, sea state, sea ice and snow. Inuvialuit hunters have experienced directly, and
1640 learned from one another, how polar bears, seals and other wildlife have responded to these
1641 changes, just as Inuvialuit hunters themselves have responded to these changes. (p xi)

1642
1643 Observing and harvesting animals creates an intimate knowledge of the land, sea and ice. (p xii)

1644
1645 Everything from polar bear condition to mating, reproduction and polar bear harvest of seals, to
1646 Inuvialuit harvest of polar bears depends on ice conditions. There has always been significant
1647 annual variation in sea ice conditions and hence in local abundance, distribution and condition of
1648 polar bears and their primary prey. As a result, caution is required when thinking about the
1649 effects of climate change on polar bears. Inuvialuit recognize that there have been substantial
1650 changes in Beaufort Sea ice conditions since the mid-1980s that have affected their harvesting
1651 activities and opportunities to know and learn from polar bears. Changing ice conditions and a
1652 warming Arctic in general are a great concern to the Inuvialuit TKHs who participated in (the
1653 Inuvialuit polar bear traditional knowledge study). (p 212)

1654 1655 Polar bears and climate change

1656 In general, TK holders said that the physical condition of polar bears in their areas has remained
1657 stable over time, although there is considerable variation from one season to the next, and even
1658 within a given hunting season. There appear to be fewer really big bears and they are not as fat as
1659 they were prior to the mid-1980s.

1660
1661 Ice and seal hunting conditions are important, but are not the only factors determining where
1662 polar bears hunt. The consensus of the workshop participants is that it is premature to conclude
1663 that the abundance of polar bears in the Beaufort Sea has declined and that their overall condition
1664 has permanently deteriorated, given the complex nature of polar bear interactions with sea ice
1665 and seals. The number of polar bears in the Inuvialuit polar bear hunting area (generally the
1666 Canadian Beaufort Sea region) has remained relatively stable during the living memory of study
1667 participants. While TKHs stated repeatedly that ice conditions are changing, they also stated with
1668 equal vigor that ice conditions have always been highly variable. (p 212)

1669
1670 The following excerpts from the traditional knowledge section of the NWT polar bear status
1671 report (SARC 2012):

1672 *Polar bear numbers do go up and down in certain areas. When numbers fluctuate, it is hard to*
1673 *tell whether there are fewer bears overall or if they have just gone somewhere else. This is*
1674 *because polar bear movements cause numbers in certain areas to fluctuate.*

1675

1676 **Appendix B: Background Information on Subpopulation Status** 1677 **Assessments and History of Harvest Management**

1680 **Southern Beaufort Sea Subpopulation**

1682 The Southern Beaufort Sea (SB) subpopulation as currently recognized in Canada extends from
1683 133°W at approximately Tuktoyaktuk, Northwest Territories west to Icy Cape, Alaska. As noted
1684 within the management plan, the eastern boundary recently changed from its previous location at
1685 approximately Pearce Point, Northwest Territories.

1686 The SB subpopulation is shared with Alaska and managed under the 1988 Inuvialuit- Inupiat
1687 agreement. The quota is recommended under the principles of this agreement by the designated
1688 commissioners of the North Slope Borough and the Inuvialuit Game Council, and technical
1689 advisors.

1690 Management objectives and guiding principles for the Southern Beaufort polar bear
1691 subpopulation are outlined in the *Inuvialuit-Inupiat Polar Bear Management Agreement in the*
1692 *Southern Beaufort Sea*.

1693 The leading objectives of this agreement are:

- 1694 • To maintain a healthy viable population of polar bears in the southern Beaufort Sea in
1695 perpetuity, and
- 1696 • To manage polar bears on a sustained yield basis in accordance with all the best
1697 information available whereby the acceptable annual harvest level does not exceed net
1698 annual recruitment to the population and accounts for all forms of removal from the
1699 population

1700 The management partners and collaborating agencies for the SB subpopulation on the Canadian
1701 side are the Government of the Northwest Territories, the Yukon Government, the WMACs, the
1702 IGC and Environment Canada.

1703 The SB population declined substantially as harvest increased in the late 1950s/early 1960s due
1704 to sport hunting by non-aboriginals and fur price increases (Usher 1976, Amstrup et al. 1986,
1705 Amstrup 1995).

1706 Quotas were first applied in Canada for the 1967-68 hunting season. In the absence of data,
1707 quotas for each settlement were established by averaging the harvest of the previous 3 years and
1708 then reducing that number by a modest amount (Brower et al. 2002).

1709 The first quota increases based on scientific information were made in 1978-79 after completion
1710 of the first population study of polar bears in the Western Arctic (Stirling 1975).

1711 There have been multiple inventories conducted in the Southern Beaufort region, and all were
1712 based upon the former subpopulation boundaries. Results are summarized below:

Inventory period	Population Estimate	Confidence\Comments	Reference
1972-83	1,778	SD +803; CV=0.45	Amstrup et al. 1986
1992	Near 1,480		Amstrup 1995
1986-98	2,272 (2001)	Based on est of 1,250 females (C.V.=0.106); 55% females	Amstrup et al. 2001
2001-2006	1,526	95% CI=1211-1841; C.V.=0.106	Regehr et al. 2006

1713

1714 The current SB subpopulation estimate and estimate used for management is 1,215. This
 1715 estimate is based on the Regehr et al. (2006) estimate (1,526) for the previous subpopulation
 1716 area adjusted for new boundary at 133°W (Tuktoyaktuk) following unpublished analysis by
 1717 Griswold et al. (2010), which indicated 311 bears would shift from the SB to the NB under the
 1718 aforementioned boundary shift.

1719 A recent population trend analysis by Bromaghin et al. (2015) suggests that a decline occurred in
 1720 the SB in the mid-2000s, coinciding with years of heavy sea ice conditions. The trend analysis
 1721 suggests the population began to increase again towards the later 2000's. The study area and
 1722 sampling regime on the Canadian side of the study area varied and introduced bias. It is difficult
 1723 to assess the impact of this on the trend analysis. Plans are underway to conduct a new
 1724 population estimate in 2017.

1725 According to the PBTC in 2015, the *local and or TK assessment* of SB was 'stable'. The *recent*
 1726 *trend* (15 years ago to present) was identified as '*likely decline*' because the population estimate
 1727 resulting from joint work across borders (2003-2006) produced a population estimate that was
 1728 lower but not statistically different from the previous population estimate (Amstrup et al. 1986,
 1729 Regehr et al. 2006). The *future trend* (present to 10 years into future) was also identified as
 1730 '*likely decline*' based on sea ice declines (Durner et al. 2009), changes in body size and cub
 1731 recruitment of SB bears in Alaska (Rode et al. 2010), and modeling that suggests declines in
 1732 survival and breeding rates are related to increases in the ice free period (Regehr et al. 2010).

1733 Northern Beaufort Sea Subpopulation

1734 The Northern Beaufort Sea (NB) subpopulation as currently recognized in Canada extends from
 1735 Tuktoyaktuk (133° W) east through Amundsen Gulf and Dolphin and Union Strait to include
 1736 Coronation Gulf. It covers nearly all of the Northern Beaufort Sea and into M'Clure Strait. This
 1737 includes portions of Nunavut.

1738 As noted within the management plan, the subpopulation boundary between the NB/SB recently
 1739 changed from its previous location at approximately Pearce Point to Tuktoyaktuk (133° W) and
 1740 the NWT management unit has been adjusted accordingly.

1742 Management objectives and guiding principles for the NB are outlined in the *Polar Bear*
1743 *Management Agreement for the North[ern] Beaufort Sea and Viscount Melville Sound Polar*
1744 *Bear Populations between Inuit of the Kitikmeot West Region in Nunavut and the Inuvialuit*
1745 (2006).

1746 The leading objectives of this agreement are:

1747 • *To maintain the North Beaufort Sea and Viscount-Melville Sound polar bear populations*
1748 *at healthy viable levels in perpetuity, and*
1749 • *To manage polar bears on a sustained yield basis in accordance with all the best*
1750 *information available*

1751 Where:

1752 *Sustainable yield means a harvest level which does not exceed net annual recruitment to the*
1753 *population and accounts for all human-caused forms of removal from the population and which*
1754 *considers the status of the population, based on the best available scientific information and*
1755 *Traditional Knowledge/Inuit Qaujimajatuqangit*

1756 *And noting that the continued hunting of polar bears is essential to maintain the dietary,*
1757 *cultural, and economic base of the groups;*

1758 *And noting that the maintenance of a sustained harvest for traditional users in perpetuity*
1759 *requires that the number of polar bears taken annually not exceed the productivity of the*
1760 *population*

1761 The management partners and collaborating agencies for the NB subpopulation on the ISR side
1762 are the Government of the Northwest Territories, the WMAC (NWT), the IGC and Environment
1763 Canada.

1764 There have been multiple population assessments conducted in the NB, and all were based upon
1765 the former subpopulation boundaries. Inventory periods and resultant population estimates
1766 during each decade are as follows (as documented in Stirling et al. (2007) except final 2006
1767 estimate):

Inventory Period	Population Estimate	95% Confidence Interval	Estimate for Management Purposes	Comments
1972-1975	745	± 246	1,200	
1985-1987	867	± 141	1,200	
1992-1994	289	± 62	1,200	Only area north of Norway Island covered consistently

2004-2006	980	± 155	1,400	Increase in estimate based on negative bias due lack of capture effort in north and east portions of study area
2006	1,291		1,711	Boundary change (Griswold et al. 2010) and estimate used for management purposes adjusted for bias in sampling

1768

1769 Stirling et al. (2007) indicate that estimate of bears during the 1990s was lower, however, capture
 1770 effort for this period differed from other periods, and was focused in the northern portion of the
 1771 subpopulation (northwest corner of Banks Island and Prince Patrick Island).

1772 The NB population estimate under the current boundary is 1,291, a number derived from the
 1773 2000s estimate with the addition of 311 bears (following analysis conducted by Griswold et al.
 1774 ((2010) unpublished) that estimated the number of bears that would shift between subpopulations
 1775 under the boundary change.

1776 Stirling et al. (2011) recognized that the estimate from the 2000s (980) was likely biased low
 1777 (possibly related to changes in distribution), and suggested the population estimates of 1200-
 1778 1300 in 2004 and 2005 may more accurately reflect the current number of bears in the
 1779 population. They furthermore, recognized that limited sampling in the northern portion of the
 1780 study area may have led to estimates that are biased low.

1781 The NB population estimate used for management purposes has historically and continues to be
 1782 adjusted to reflect negative bias. The current estimate used for management purposes of the NB
 1783 is 1,710 (WMAC (NWT), 25 July 2011).

1784 Hunting in the NB has historically been focused in the Amundsen Gulf and western coast of
 1785 Banks Island (with a focus near Sachs Harbour) (Usher 1976).

1786 Within Canada, quotas were first established in NWT by the 33rd Session of the Territorial
 1787 Council at Resolute Bay. The quotas were to become effective on July 1 for the 1967-68 hunting
 1788 season. In the absence of data, quotas for each settlement were established by averaging the
 1789 harvest of the previous 3 years and then reducing that number by a modest amount.

1790 The first quota increases based on scientific information were made in 1978-79 after completion
 1791 of the first population study of polar bears in the Western Arctic (Stirling 1975).

1792 According to the PBTC in 2015, the *local and/or TK* assessment of NB was ‘stable’, and the
 1793 *recent trend* (15 years ago to present) was identified as ‘likely stable’. The *future trend* (present
 1794 to 10 years into future) was also identified as ‘likely stable’ based on information suggesting that
 1795 the NB has remained stable, and habitat conditions may improve in the short term (Durner et al.
 1796 2009; Stirling et al. 2011; Joint Secretariat 2015). Plans are underway to conduct a new
 1797 population estimate in 2017.

1798 **Viscount Melville Sound Subpopulation**

1799 The Viscount Melville Sound subpopulation (VM) extends from northern Victoria Island
1800 through the Viscount-Melville Sound to north of Melville Island, and from eastern M'Clure
1801 Strait, north to eastern Prince Patrick Island (Figure 4). The majority of the subpopulation area is
1802 within the ISR, with the eastern portion within Nunavut.

1803 Management objectives and guiding principles for the NB are outlined in the *Polar Bear*
1804 *Management Agreement for the North[ern] Beaufort Sea and Viscount Melville Sound Polar*
1805 *Bear Populations between Inuit of the Kitikmeot West Region in Nunavut and the Inuvialuit*
1806 (2006).

1807 The key objectives of this agreement are:

- 1808 • *To maintain the North Beaufort Sea and Viscount-Melville Sound polar bear populations*
1809 *at healthy viable levels in perpetuity, and*
- 1810 • *To manage polar bears on a sustained yield basis in accordance with all the best*
1811 *information available*

1812 Where:

1813 *Sustainable yield means a harvest level which does not exceed net annual recruitment to the*
1814 *population and accounts for all human-caused forms of removal from the population and which*
1815 *considers the status of the population, based on the best available scientific information and*
1816 *Traditional Knowledge/Inuit Qaujimajatuqangit*

1817 *And noting that the continued hunting of polar bears is essential to maintain the dietary,*
1818 *cultural, and economic base of the groups;*

1819 *And noting that the maintenance of a sustained harvest for traditional users in perpetuity*
1820 *requires that the number of polar bears taken annually not exceed the productivity of the*
1821 *population;*

1822 The management partners and collaborating agencies for the VM subpopulation on the ISR side
1823 are the Government of the Northwest Territories, the WMAC (NWT), the IGC and Environment
1824 Canada.

1825 The first subpopulation inventory for VM was conducted between 1989-1992 and yielded an
1826 estimate of 161 bears (SE = 34) (Taylor. et al 2002). There had been previous work (1974-1976)
1827 in the southern portion of the subpopulation area (Hadley Bay and Wynniet Bay) as part of a
1828 broader study; however, no specific VM estimate was produced (Schweinsburg et al. 1981).
1829 Following fieldwork from 1989-1992, there was a concern that relatively high harvest rates and
1830 strong selection for males that occurred prior to the inventory had reduced the number of adult
1831 males in the population impacting productivity. As a result, beginning in 1994, there was a 5
1832 year moratorium on harvest of VM bears. A subsequent simulation analysis using RISKMAN
1833 suggested that in 1999 (following a 5 year moratorium) there was an estimated population of 215
1834 (SE = 57.4) (Taylor et al. 2002). A subpopulation estimate for the VM is currently underway
1835 (fieldwork conducted 2012-2014).

1836 Within Canada, quotas were first established in NWT by the 33rd Session of the Territorial
1837 Council at Resolute Bay. The quotas were to become effective on July 1 for the 1967-68 hunting
1838 season. In the absence of data, quotas for each settlement were established by averaging the
1839 harvest of the previous 3 years and then reducing that number by a modest amount.

1840 In 1973-74, the GNWT created a quota of 12 bears for Melville Island and 4 for Hadley Bay on
1841 northeast Victoria Island. Arguments (excerpts from PBTC minutes) supporting the
1842 establishment of this quota were: a) that it would be an added incentive for people to travel
1843 further from the settlements, particularly in years of fox abundance; b) a limited kill would allow
1844 accumulation of some information about the bear population in the area, which was currently
1845 lacking and, c) the kill would not cause irreparable damage and might give incentive for
1846 biological research in the area. At the time the PBTC suggested that the harvest should be
1847 monitored, along with full collection of specimens, and subject to review in due course when
1848 research has been conducted in the area.

1849 Initially, the Hadley Bay quota was to be taken by hunters from Cambridge Bay. In 1980-81, the
1850 Hadley Bay quota was increased to 8. After the signing of the IFA (1984), Ulukhaktok began
1851 taking up to 8 of their community quota in Wynniatt Bay.

1852 Although the Melville quota was hunted most often by Sachs Harbour and Ulukhaktok, it was
1853 also allocated to hunters from Resolute and other areas in the eastern Arctic.

1854 In 1984, the Melville quota was permanently assigned to be shared between Sachs Harbour and
1855 Ulukhaktok.

1856 Beginning in the 1991-92 season, the quotas for Hadley Bay and Melville Island (8 and 12
1857 respectively) were eliminated. Instead, Sachs Harbour, Ulukhaktok, and Cambridge Bay
1858 received an additional 6 tags each. The six bear allocations to Ulukhaktok and Cambridge Bay
1859 were still allowed to be taken from Viscount-Melville Sound for 1991-/92 and 1992/93. The
1860 bears taken by Cambridge Bay were mostly from northeastern Victoria Island.

1861 It was stipulated that the 6 bears allocated to Sachs Harbour would be for males and taken north
1862 of Norway Island (within the Northern Beaufort subpopulation).

1863 In the negotiations for a management agreement for Viscount Melville Sound, the management
1864 area was adjusted and a quota of 4 was settled upon. Ulukhaktok was allocated a quota of 4 for
1865 Viscount Melville Sound in 1993-94. Beginning in the 1994-95 hunting season, a five year
1866 moratorium on hunting polar bears in Viscount Melville Sound took effect. After that, a rotation
1867 took place between Cambridge Bay and Ulukhaktok (formerly Holman), in alternate years, for a
1868 quota of 4 bears. Since Ulukhaktok had the last quota from Viscount Melville, the new rotation
1869 was scheduled to begin with Cambridge in 1999-2000. Commencing in 2004/2005 the quota for
1870 Ulukhaktok and Cambridge Bay was set at 4 and 3 bears respectively.

1871 According to the PBTC 2015 Status table, the *local and or TK assessment* of VM was
1872 ‘increased’. This was based on information from the Canadian Wildlife Service Nunavut
1873 consultation report (unpublished 2009), and information from community consultations in
1874 Cambridge Bay and Ulukhaktok during 2012 and 2013. The *recent trend* (15 years ago to
1875 present) was identified as ‘likely stable’ because the harvest has been managed for population

1876 growth since the 1989-1992 survey which included a 5 year moratorium. The *future trend*
1877 (present to 10 years into future) was identified as ‘*uncertain*’ because vital rates used in the
1878 population viability analysis (RISKMAN) are 22 years old, and a population reassessment is
1879 currently in progress.

1880 **Arctic Basin Subpopulations**

1881 ISR management authorities share responsibility for managing the Arctic Basin subpopulation
1882 with all signatories to the 1973 Polar Bear Range States Agreement. There is no harvest of Arctic
1883 Basin bears, and no population estimate has ever been produced. At the 2015 Range States
1884 meeting, the Polar Bear Specialist Group was asked to develop a recommendation about what
1885 kind of survey or surveys would be appropriate for this population, and to provide a cost
1886 estimate.

1887 **References:**

1888 Amstrup, S.C. 1995. Movements, distribution, and population dynamics of polar bears in the
1889 Beaufort Sea. Ph.D. Dissertation. University of Alaska-Fairbanks, Fairbanks, Alaska, 299
1890 pp.

1891 Amstrup, S.C., T.L. McDonald, and I. Stirling. 2001b. Polar bears in the Beaufort Sea: A 30-year
1892 mark-recapture case history. *Journal of Agricultural, Biological, and Environmental
1893 Statistics*, Vol. 6(2): 221-234.

1894 Amstrup, S.C., I. Stirling, and J.W. Lentfer. 1986. Past and present status of polar bears in
1895 Alaska. *Wildlife Society Bulletin*. 14:241-254.

1896 Amstrup, S. C., I. Stirling, T. S. Smith, C. Perham, and G. W. Thiemann. 2006. Recent
1897 observations of intraspecific predation and cannibalism among polar bears in the southern
1898 Beaufort Sea. *Polar Biology* 29:997-1002.

1899 Bromaghin, J. F., T. L. McDonald, I. Stirling, A. E. Derocher, E. S. Richardson, E. V. Regehr, D.
1900 C. Douglas, G. M. Durner, T. C. Atwood, and S. C. Amstrup. 2015. Polar bear population
1901 dynamics in the southern Beaufort Sea during a period of sea ice decline. *Ecological
1902 Applications* 25(3):634-651.

1903 Brower, C.D., A. Carpenter, M.L. Branigan, W. Calvert, T. Evans, A.S. Fischbach, J.A. Nagy, S.
1904 Schliebe, and I. Stirling. 2002. The Polar Bear Management Agreement for the Southern
1905 Beaufort Sea: An evaluation of the first ten years of a unique conservation agreement.

1906 COSEWIC. 2008. COSEWIC assessment and update status report on the polar bear *Ursus
1907 maritimus* in Canada. Committee on the Status of Endangered Wildlife in Canada,
1908 Ottawa. vii + 75 pp.

1909 Durner, G.M., D.C. Douglas, R.M. Nielson, S.C. Amstrup, T.L. McDonald, I. Stirling, M.
1910 Mauritzen, E.W. Born, Ø. Wiig, E. DeWeaver, M.C. Serreze, S.E. Belikov, M.M.
1911 Holland, J. Maslanik, J. Aars, D.C. Bailey, and A.E. Derocher. 2009. Predicting 21st

1912 century polar bear habitat distribution from global climate models. Ecological
1913 Monographs 79(1): 25-58.

1914 Griswold J., T. McDonald, M. Branigan, E.V. Regehr, S.C Amstrup. Unpublished. Southern
1915 and northern Beaufort Sea polar bear population estimates under a proposed boundary
1916 shift. Draft Manuscript Report

1917 Joint Secretariat. 2015. *Inuvialuit and Nanuq: A Polar Bear Traditional Knowledge Study*. Joint
1918 Secretariat, Inuvialuit Settlement Region. xx + 304 pp.

1919 Regehr, E.V., S.C. Amstrup, and I. Stirling. 2006. Polar bear population status in the southern
1920 Beaufort Sea. U.S. Geological Survey Open File Report 2006-1337. 20 pp.

1921 Regehr, E. V., C. M. Hunter, H. Caswell, S. C. Amstrup, and I. Stirling. 2010. Survival and
1922 breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of
1923 Animal Ecology **79**:117-127.

1924 Rode, K. D., S. C. Amstrup, and E. V. Regehr. 2010. Reduced body size and cub recruitment in
1925 polar bears associated with sea ice decline. Ecological Applications 20:768–782.

1926 Schweinsburg, R.E., D.J. Furnell, and S.J. Miller. 1981. Abundance, distribution, and population
1927 structure of polar bears in the lower Central Arctic Islands. Wildlife Service Completion
1928 Report Number 2 . Government of the Northwest Territories, Yellowknife, Northwest
1929 Territories, Canada.

1930 Species at Risk Committee. 2012. Species Status Report for Polar Bear (*Ursus maritimus*) in the
1931 Northwest Territories. Species at Risk Committee, Yellowknife, NT.

1932 Stirling, I., Andriashuk, D., Latour, P., and Calvert, W. 1975. The distribution and abundance of
1933 polar bears in the eastern Beaufort Sea. Final Report to the Beaufort Sea Project.
1934 Victoria, B.C.: Fisheries and Marine Service, Department of Environment. 59 p.

1935 Stirling, I., TL McDonald, E.S. Richardson, E. V. Regehr. 2007. Polar Bear Population Status in
1936 the Northern Beaufort Sea. U.S. Geological Survey Open File Report 2007. 33 pp.

1937 Stirling, I., T. L. McDonald, E. S. Richardson, E. V. Regehr, and S. C. Amstrup. 2011. Polar
1938 bear population status in the northern Beaufort Sea, Canada, 1971-2006. Ecological
1939 Applications **21**:859-876.

1940 Taylor, M. K., J. Laake, H. D. Cluff, M. Ramsay, and F. O. Messier. 2002. Managing the Risk
1941 from Hunting for the Viscount Melville Sound Polar Bear Population. Ursus **13**:185-202.
1942

1943 Usher, P. 1976. Inuit Land Use in the Western Canadian Arctic. Pp. 21-31 in: Inuit Land Use and
1944 Occupancy Report, Vol. 1. M.M.R. Freeman, ed. Department of Indian and Northern
1945

1946 WMAC (NWT) 25July 2011 – Letter to ENR Minister re Recommendations for northern
1947 Beaufort Sea polar bear population boundary change and Total Allowable Harvest

1948 Appendix C: Threats Classification Table by Polar Bear Subpopulation

1949
 1950 A short description of each threat can be found in Section 4.6. A detailed threats classification was done to identify the overall level
 1951 of concern for each threat by subpopulation. This threats classification was completed collaboratively by representatives of ENR,
 1952 WMAC (NWT), WMAC (NS), IGC, Environment Yukon, Parks Canada, and Environment Canada in November 2015. Participants
 1953 brought to the table information gathered by their respective organizations. Parameters used to classify threats are explained in Table
 1954 D1. Results are presented below.

1955 Table D1. Parameters used in threats classification.

Parameter	Description	Categories
Timing (i.e., immediacy)	Indicates if the threat is: Presently happening Expected in next 10 years Expected in > 10 years Not expected to happen	Happening now Short-term future Long-term future Not expected
Probability of event within 10 years	Indicates the likelihood of the threat to occur in the next 10 years	High Medium Low
Extent (scope)	Indicates the spatial extent of the threat (based on percentage of subpopulation area affected)	Widespread (greater than 50%) Localized (less than 50%); Unknown
Severity of subpopulation-level effect	Indicates how severe the impact of the threat would be at a subpopulation level if it occurred	High Medium Low Unknown
Temporality	Indicates the frequency with which the threat occurs (i.e. all year round or only seasonally)	Seasonal Continuous
Causal Certainty:	Indicates the confidence in understanding the impact that the threat has on polar bears	High Medium Low
Overall level of Concern	Indicates the overall threat to sustainability of the subpopulation, in the next 10 years (considering the above)	High Medium Low

1957
1958
1959

Threat #1. Climate change (warming and ice reduction)	
Specific Threat	Lack of platform to hunt prey (temporal and spatial); change affecting availability of prey; separation from terrestrial denning areas and refugia; alteration of denning habitat
Stress	Increased nutritional stress; increased intraspecific competition; increased energy expenditure (increased distance to travel (swim/walk) to preferred habitat) and corresponding impacts on survival and recruitment; increased risk of drowning; thermal consequences (cubs swimming); denning failure (den collapse/inadequate den resulting in reproductive consequences)

1960

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Happening now	Happening now	Short-term future	Long term future
Probability of event within 10 years (high, medium, low)	High	High	Medium/Low	Low
Extent (scope): the spatial extent of the threat (widespread; localized (less than 50%);	Widespread	Localized	Localized	Unknown
Severity of subpopulation-level effect (high; medium, low)	High\Medium	Low	Low	Low
Temporality: frequency with which the threat occurs (seasonal/continuous)	Seasonal	Seasonal	Seasonal	Seasonal
Causal Certainty: level of certainty with which it is a threat to the species once it occurs (high, medium, low)	High	High	High	High
Overall level of concern regarding threat to sustainability of the subpopulation, in the next 10 years, considering the above (high; medium, low)	High/medium	Low	Low	Low

1961
1962

Threat #2. Oil and Gas Development – Risk of large scale oil spill ⁴	
Specific Threat	Oil contamination (fur); hydrocarbon ingestion (through prey/through self-cleaning); reduced prey availability
Stress	toxic; lethal if ingested; nutritional stress

1963

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Happening now (Alaska)	Long term future	Long term future	Unknown
Probability of event within 10 years (high, medium low)	Low	Low	Low	Low
Extent (scope): the spatial extent of the threat (widespread; localized);	Widespread	Widespread	Widespread	Widespread
Severity of population-level effect (high; med; low)	High	High	High	High
Temporality frequency with which the threat occurs (seasonal/continuous)	Continuous	Continuous	Continuous	Continuous
Causal Certainty: level of certainty with which it is a threat to the species (high, medium, low)	High	High	High	High
Overall level of concern regarding threat to sustainability of the subpopulation, in the next 10 years, considering the above (high; medium, low)	Low	Low	Low	Low

1964

1965

⁴ Tier 2 and tier 3 spills – requiring national or international-level response

1966

Threat #3. Increased shipping (could be related to oil and gas development, tourism, or related to an increase in shipping through Northwest Passage)	
Specific Threat	Alteration of habitat (influencing freeze-up); increased traffic; increased potential for contaminants to enter ecosystem (though spill or waste being released); change in quality of habitat; noise
Stress	Potential for a strike to occur (bears spending more time swimming – occurs during same season as shipping); unknown impact of exposure to increased contaminants; changes in behaviour and movements

1967

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Happening now	Happening now	Short-term future	Long-term future
Probability of event within 10 years (high, medium low)	High	High	Medium/Low	Low
Extent (scope): the spatial extent of the threat (widespread; localized);	Widespread	Localized	Localized	Localized
Severity of subpopulation-level effect (high; medium, low)	Low	Low	Low	Low
Temporality frequency with which the threat occurs (seasonal/continuous)	Seasonal	Seasonal	Seasonal	Seasonal
Causal Certainty: level of certainty with which it is a threat to the species (high, medium, low)	Low	Low	Low	Low
Overall level of concern regarding threat to sustainability of the subpopulation, in the next 10 years, considering the above (high; medium, low)	Medium/Low	Low	Low	Low

1968

1969

1970

Threat #4. Human caused mortality in excess of TAH

Specific Threat	Increase in potential for human-bear conflicts related to changing patterns of aggregation in response to changing habitat; increased potential for human habituation, DLPs and illegal harvest in areas where resource development occurs in or near sea ice habitat.
Stress	Mortality as a result from human-bear conflict where it exceeds the TAH when combined with harvest. There would also be impacts on subsistence harvest as an increase in DLPs would result in a decrease in potential subsistence harvests (as DLPs are counted under the quota). Potential for population level impact if TAH is exceeded repeatedly.

1971

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Not expected	Not Expected	Not Expected	Not Expected
Probability of event (high, med; low)	Low	Low	Low	Low
Extent (scope): the spatial extent of the threat (widespread; localized);	Localized	Localized	Localized	Localized
Severity of subpopulation-level effect (high; med; low)	Low	Low	Low	Low
Temporality frequency with which the threat occurs (seasonal/continuous)	Seasonal	Seasonal	Seasonal	Seasonal
Causal Certainty: level of certainty with which it is a threat to species (high, medium, low)	High	High	High	High
Overall level of concern regarding threat to subpopulation, in the next 10 years, considering the above (high; med; low)	Low	Low	Low	Low

1972

1973

Threat #5. Pollution and contamination	
Specific Threat	Increased contaminants as a result of liberation related to climate change; increased contaminant levels (including POPs, mercury) related to resource extraction, shipping, and other industrial activities worldwide; ingestion of garbage; increased pollution
Stress	Increased contaminants can impact health function; can change prey availability

1974

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Happening now	Happening now	Happening now	Happening now
Probability of event (high, med; low)	High	High	High	High
Extent (scope): the spatial extent of the threat (widespread; localized);	Widespread/ localized	Widespread/ localized	Widespread/ localized	Widespread/ localized
Severity of population-level effect (high; medium; low)	Unknown	Unknown	Unknown	Unknown
Temporality frequency with which the threat occurs (seasonal/continuous)	Continuous	Continuous	Continuous	Continuous
Causal Certainty: level of certainty with which it is a threat to the species (high, medium, low)	Medium	Medium	Medium	Medium
Overall level of concern regarding threat to species, in the next 10 years, considering the above (high; medium; low)	Medium	Medium	Medium	Medium

1975

1976

1977

Threat #6. Research impacts	
Specific Threat	Impact of capture (immobilization event); impact of devices (collars, implants) on individual bears; aircraft disturbance – viewed cumulatively
Stress	cub survival; nutritional consequence if feeding activity hindered); immune impairment due to capture, handling, and device application (eg. collar damage, implants); potential for the spread of disease and parasites (through ineffective sterilization of equipment)

1978

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Happening now	Happening now	Long term future	Long-term future
Probability of event (high, med; low)	High	High	Low	Low
Extent (scope): the spatial extent of the threat (widespread; localized);	Widespread	Widespread	Widespread	Unknown
Severity of population-level effect (high; medium; low)	Low	Low	Low	Low
Temporality frequency with which the threat occurs (seasonal/continuous)	Continuous	Continuous	Continuous	Continuous
Causal Certainty: level of certainty with which it is a threat to the species (high, medium, low)	Low	Low	Low	Low
Overall level of concern regarding threat to species, in the next 10 years, considering the above (high; med; low)	Medium\Low	Low	Low	Low

1979

1980

Threat #7. Disease and parasites	
Specific Threat	Overall warming of the Arctic may result in the ability of non-native parasites and disease to arrive in region (possibly from species expanding their range north) and persist; nutritional stress may lead to consumption of internal organs of prey, thus potentially increasing exposure to parasites and pathogens (capture)
Stress	Remains to be determined; potential immune and nutritional consequences.

1981

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Happening now	Short-term future	Unknown	Unknown
Probability of event in the next 10 years (high, med; low)	High	Medium	Unknown	Unknown
Extent (scope): the spatial extent of the threat (widespread; localized);	Widespread	Unknown	Unknown	Unknown
Severity of subpopulation-level effect (high; med; low)	Unknown	Unknown	Unknown	Unknown
Temporality frequency with which the threat occurs (seasonal/continuous)	Continuous	Continuous	Continuous	Continuous
Causal Certainty: level of certainty with which it is a threat to the species (high, medium, low)	Low	Low	Low	Low
Overall level of concern regarding threat to species, in the next 10 years, considering the above (high; med; low)	Medium	Low	Low	Low

1982

1983

1984

Threat #8. Interspecific competition (in terms of food and mates)	
Specific Threat	Grizzly bears expanding their range north could potentially lead to increased competition\conflict and hybridization
Stress	An increase in competition/conflict may result in nutritional stress, injury or mortality; an increase in hybridization events may decrease females available to mate in polar bear populations; potential change in genetic structure of subpopulation

1985

Threat Information	Southern Beaufort	Northern Beaufort	Viscount Melville	Arctic Basin
Timing (i.e., immediacy) of threat: indicates if the threat is present (happening now); expected in the short term future (within 10 years); expected in the long term future (>10 years)	Happening now	Happening now	Happening now	Not expected
Probability of event (high, med; low)	High	High	High	Low
Extent (scope): the spatial extent of the threat (widespread; localized);	Localized	Localized	Localized	Not expected
Severity of population-level effect (high; med; low)	Low	Low	Low	Not expected
Temporality frequency with which the threat occurs (seasonal/continuous)	Seasonal	Seasonal	Seasonal	Not expected
Causal Certainty: level of certainty with which it is a threat to polar bears once it happens (high, medium, low)	Low	Low	Low	Low
Overall level of concern regarding threat to species, in the next 10 years, considering the above (high; med; low)	Low	Low	Low	Low

1986

1987